For the asymmetrical colloidal mixture subject to a confining potential and an external multi-Gauss potential, the separation of species is studied based on the classical density functional theory of simple fluids. Th...For the asymmetrical colloidal mixture subject to a confining potential and an external multi-Gauss potential, the separation of species is studied based on the classical density functional theory of simple fluids. The multi-Gauss potential consists of several Gauss barriers, which are distributed along the axial direction with uniform distance. The barrier width,barrier distance, and barrier height are individually adjusted to investigate their effects on the species separation. From the numerical results, it is concluded that in each condition, the competition between the external potential and the depletion potential determines the phase equilibrium and the separation. Species separation appears only in the region where the depletion is dominant. On the contrary, both species are absent in the regions where the external potential takes the absolute advantage.展开更多
基金Project supported by the Fundamental Research Funds for the Central Universities,China(Grant No.13MS105)
文摘For the asymmetrical colloidal mixture subject to a confining potential and an external multi-Gauss potential, the separation of species is studied based on the classical density functional theory of simple fluids. The multi-Gauss potential consists of several Gauss barriers, which are distributed along the axial direction with uniform distance. The barrier width,barrier distance, and barrier height are individually adjusted to investigate their effects on the species separation. From the numerical results, it is concluded that in each condition, the competition between the external potential and the depletion potential determines the phase equilibrium and the separation. Species separation appears only in the region where the depletion is dominant. On the contrary, both species are absent in the regions where the external potential takes the absolute advantage.