Camellia is the final winner of 128-bit block cipher in NESSIE. In this paper, we construct some efficient distinguishers between 4-round Camellia and a random permutation of the blocks space. By using collision-searc...Camellia is the final winner of 128-bit block cipher in NESSIE. In this paper, we construct some efficient distinguishers between 4-round Camellia and a random permutation of the blocks space. By using collision-searching techniques, the distinguishers are used to attack on 6, 7, 8 and 9 rounds of Camellia with 128-bit key and 8, 9 and 10 rounds of Camellia with 192/256-bit key. The 128-bit key of 6 rounds Camellia can be recovered with 210 chosen plaintexts and 215 encryptions. The 128-bit key of 7 rounds Camellia can be recovered with 212 chosen plaintexts and 254.5 encryptions. The 128-bit key of 8 rounds Camellia can be recovered with 213 chosen plaintexts and 2112.1 encryptions. The 128-bit key of 9 rounds Camellia can be recovered with 2113.6 chosen plaintexts and 2121 encryptions. The 192/256-bit key of 8 rounds Camellia can be recovered with 213 chosen plaintexts and 2111.1 encryptions. The 192/256-bit key of 9 rounds Camellia can be recovered with 213 chosen plaintexts and 2175.6 encryptions. The 256-bit key of 10 rounds Camellia can be recovered with 214 chosen plaintexts and 2239.9 encryptions.展开更多
The Baoshan Block is tectonically located in the middle segment of the Sibumasu plate. Granitic magmatism within the Baoshan Block has been considered weakly active due mainly to very limited exposures during the Hima...The Baoshan Block is tectonically located in the middle segment of the Sibumasu plate. Granitic magmatism within the Baoshan Block has been considered weakly active due mainly to very limited exposures during the Himalaya orogenic episode. The geochronological study on the buried Shuangmaidi granite has confirmed the existence of the Cenozoic granitoids in the Baoshan Block. The present study indicates that: (1) It is medium- to coarse-grained two mica phyric granite, characterized by high SiO2 (73.55%-77.16%) and low CaO (0.34%-1.38%) contents, with a total alkalis (K2O+Na2O) of 5.22%-8.03%, K2O/Na2O ratios of 0.24-1.79, and total rare earth elements (ZREE) of the granite between 85 and 125 ppb. All samples are enriched in light REE and exhibit medium negative Eu anomalies; and they show pronounced negative anomalies in Ba, Sr, Ti, and Nb but significant positive anomalies in K, Rb, U, Th, and Pb on mantle-normalized trace element patterns, indicating typi-cally peraluminous to strongly peraluminous S-type granite. (2) The zircon SHRIMP U-Pb ages of the granite are 36.27±0.48 Ma for the samples from ZK7-1 and 35.78±0.49 Ma for those from ZK0-1, respectively. The similar zircon ages from these two drill cores may suggest that the granite samples come from the same buried pluton. (3) 206pb/204pb values of the granite vary from 20.115 to 25.359, 207pb/204pb from 15.776 to 16.160, and 208pb/204pb from 39.236 to 41.285, showing the characteristics of radio- active lead anomaly of the upper crust. The (87Sr/86Sr)i values calculated on the average age of the two-mica orthoclase granite (36 Ma) range from 0.72524 to 0.77503 and eNd(t) values vary from -10.9 to -11.7. These data, along with the depleted-mantle Nd modal ages of 1.73-1.80 Ga, imply that the granites might have formed from partial melting of the Precambrian crystal basements. (4) On the Hf-Rb-Ta diagram, almost all the samples fall within the field of post-collision tectonic setting. The CaO/Na2O and A1203/T展开更多
The Eurasian continent was subject to multiphase intensive intracontinental deformation in the Cenozoic(Fig.1A).However,its Cenozoic intra-continental deformation process and the driving force has long been disputed,w...The Eurasian continent was subject to multiphase intensive intracontinental deformation in the Cenozoic(Fig.1A).However,its Cenozoic intra-continental deformation process and the driving force has long been disputed,which is only associated with the Indo-Asian collision(Molnar and Tapponnier,1975;Jolivet et al.,1990;Tapponnier et al.,2001;Yin,2010;Xu et al.,2013;Zhao et al.,2016),is caused by the Pacific-Asian collision(Cui,1997;Schellart and Lister,2005;Fan et al.,2019),or is connected with a combined effect of the Indo-Asian collision and the Pacific-Eurasia convergence(Ren et al.,2002;Li et al.,2013;Shi et al.,2015;Liu et al.,2019).展开更多
The Nanyili (南一里), Laohegou (老河沟), and Shaiziyan (筛子岩) granitic intrusions are located in the southern margin of the Bikou (碧口) block in Pingwu (平武) area, Northwest Sichuan (四川). The petrogr...The Nanyili (南一里), Laohegou (老河沟), and Shaiziyan (筛子岩) granitic intrusions are located in the southern margin of the Bikou (碧口) block in Pingwu (平武) area, Northwest Sichuan (四川). The petrography and geochemical characteristics of the granitic intrusions as well as their source and tectonic settings are reported and discussed in this article. The Laohegou and Shaiziyan granites are with high SiO2 (69.89 wt.%-73.05 wt.%) and Al2O3 contents, and A/CNK=1.04-1.12. They are typical strongly peraluminous granites, with supersaturation in AI and Si. The abundance of ∑REE varies in the range of (33.13-89.12)×10^-6. The rocks show an LREE enrichment pattern and obvious Eu negative anomaly. The trace element geochemistry is characterized evidently by a negative anomaly of Ta, Nb, Ti, etc. and a positive anomaly of Rb, Ba, Sr, etc.. Zircons of the Nanyili granite have higher Th/U ratios, and their CL images have internal oscillatory zoning, suggesting that the zircons of the samples are igneous in origin. The LA ICP-MS zircon U-Pb isotopic concordia diagram yields an age of 223.1±2.6 Ma (MSWD=1.4), which indicates that the granodiorite intrusions formed in the early Late Triassic. The Nanyili, Laohegou, and Shaiziyan granites have the characteristics of post-collisional granites and are regarded as post-orogenic granites. Thus, the granite intrusions are interpreted as syn-collisional granites that resulted from the crustal thickening caused by the collisions between the North China plate and the Yangtze plate during the Indosinian. The granitic intrusions formed in a transitional environment from syn- (compressional environment) to post-collision (extensional environment).展开更多
As the Armor shape has a significant effect on the reduction of wave overtopping, this study compares the performance of various shapes of concrete armored blocks of X block and Tetrapod as the most suitable armors. I...As the Armor shape has a significant effect on the reduction of wave overtopping, this study compares the performance of various shapes of concrete armored blocks of X block and Tetrapod as the most suitable armors. In this study, a three-dimensional numerical model was used for simulation of the effects of waves on the armors of Tetrapod and X Block breakwaters. In this regard, in order to calibrate the numerical model, a sample of conventional stone armor has been selected and using available experimental data on the design of armor such as wave overtopping, wave height, period of waves and energy density of the required spectral range of wave verification was conducted on a numerical model. In this regard, it is necessary to calibrate all the conditions of the model including boundary conditions, numerical modeling, initial conditions, numerical solvers and other parameters in the numerical model and simulation error rate is determined. The maximum error of the numerical model for the relative height values of the impact waves on the structure of breakwater is 7.87% for different conditions. Accordingly, the maximum error of the numerical model in determining overtopping values is 7.81%. The average fluctuation value of overtopping in the X block armor has dropped by about 31% compared to the tetrapod armor.展开更多
In the Early Mesozoic period intercontinental movements of the Junggar and Tuva-Mongolian lithosphere terranes were accompanied by the deformation of the Paleozoic tectonic substrate and by the formation of a new tect...In the Early Mesozoic period intercontinental movements of the Junggar and Tuva-Mongolian lithosphere terranes were accompanied by the deformation of the Paleozoic tectonic substrate and by the formation of a new tectonic system of Inner Asia, the Altai collision belt. The qualitative change of the initial structure covered more than 30% ~35% of the region. and the zonal distribution of these new formations determined the belt configuration and inner peculiarities. Residual mosaic-block terranes of the Paleozoic substrate and specific collision systems are distinguished and described in this paper. The main elements of these structures are crumple zones (collision sutures). Analysis of the rock massif regional dynamometamorphism and the spatial distribution of stress-formations in Altai is the principal peculiarity of the method for recognizing the Early Mesozoic collision system. Tectonites of destruction zones (D-tectonites ) . cataclastic flow (C-tectonites ) and plastic flow (P-tectonites) are the members of these formations. Each kind of tectonites is specific for conditions of the initial substrate transformation during the collision and has its own indicator peculiarities. Isotopic dating of stress-formations in Altai gives 260~230 Ma.展开更多
The new paleomagnetic data of the early Triassic Daye Formation from Hubei Province are reported. The ChRM passes consistency test and reversal test. Two magnetic components were isolated with principal component anal...The new paleomagnetic data of the early Triassic Daye Formation from Hubei Province are reported. The ChRM passes consistency test and reversal test. Two magnetic components were isolated with principal component analysis (PCA). Component B is a ChRM and component A was acquired by remagnetization during lndosinian cycle. Rock magnetic study shows that the carrier is dominantly detrital magnetite. According to the data, in conjunction with recently published Triassic paleornagnetic results, mean paleopole of the Triassic Yangtze Block is calculated as 30.3°N, 198.4°E, α<sub>95</sub> = 9.2°.Distribution of all Triassic declinations indicates obviously local rotation in the mid-Yangtze areas,which results in consistence of the declinations with fold axes. By comparison with Triassic paleomagnetic data in the South China Block and some of geological evidence, it is inferred that the timing of the suture between the Yangtze Block and the South China Block is earlier in western part than in eastern part in the展开更多
The Qilian Block(QB)is a Precambrian micro-continent located in the northeastern Qinghai–Tibet Plateau.Prevalent Lower Paleozoic granitic magmatic rocks crop out in the QB.A new integrated study of zircon U-Pb ages a...The Qilian Block(QB)is a Precambrian micro-continent located in the northeastern Qinghai–Tibet Plateau.Prevalent Lower Paleozoic granitic magmatic rocks crop out in the QB.A new integrated study of zircon U-Pb ages and systematic whole-rock geochemical data for the Xindian,Dongjiazhuang and Xiaogaoling granites in the eastern segment of the QB constrains their emplacement ages,petrogenesis,and regional evolutionary history.U-Pb dating reveals that the Xindian granite was emplaced 454 Ma,and both the Dongjiazhuang and Xiaogaoling granites were emplaced ca.440 Ma.Geochemical study shows that all granites belong to the high-K calc-alkaline to shoshonitic series and are S-type granites formed by partial melting of continental crust,mainly metagraywacke.We infer that these ca.454–445 Ma granites formed in a syn-collisional setting during the continental collisional between the Qaidam and Qilian blocks.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.60373047)the State 863 Project(Grant No.2003AA144030)973 Project(Grant No.2004CB318004)
文摘Camellia is the final winner of 128-bit block cipher in NESSIE. In this paper, we construct some efficient distinguishers between 4-round Camellia and a random permutation of the blocks space. By using collision-searching techniques, the distinguishers are used to attack on 6, 7, 8 and 9 rounds of Camellia with 128-bit key and 8, 9 and 10 rounds of Camellia with 192/256-bit key. The 128-bit key of 6 rounds Camellia can be recovered with 210 chosen plaintexts and 215 encryptions. The 128-bit key of 7 rounds Camellia can be recovered with 212 chosen plaintexts and 254.5 encryptions. The 128-bit key of 8 rounds Camellia can be recovered with 213 chosen plaintexts and 2112.1 encryptions. The 128-bit key of 9 rounds Camellia can be recovered with 2113.6 chosen plaintexts and 2121 encryptions. The 192/256-bit key of 8 rounds Camellia can be recovered with 213 chosen plaintexts and 2111.1 encryptions. The 192/256-bit key of 9 rounds Camellia can be recovered with 213 chosen plaintexts and 2175.6 encryptions. The 256-bit key of 10 rounds Camellia can be recovered with 214 chosen plaintexts and 2239.9 encryptions.
基金supported by National Natural Science Foundation of China (GrantNos. 40772197,40972232)National High-Tech Research & Development (Grant No. 2006BAB01A03)National Support Program of Science & Technology (Grant Nos. 2006BAB01A01,2006BAB01A03)
文摘The Baoshan Block is tectonically located in the middle segment of the Sibumasu plate. Granitic magmatism within the Baoshan Block has been considered weakly active due mainly to very limited exposures during the Himalaya orogenic episode. The geochronological study on the buried Shuangmaidi granite has confirmed the existence of the Cenozoic granitoids in the Baoshan Block. The present study indicates that: (1) It is medium- to coarse-grained two mica phyric granite, characterized by high SiO2 (73.55%-77.16%) and low CaO (0.34%-1.38%) contents, with a total alkalis (K2O+Na2O) of 5.22%-8.03%, K2O/Na2O ratios of 0.24-1.79, and total rare earth elements (ZREE) of the granite between 85 and 125 ppb. All samples are enriched in light REE and exhibit medium negative Eu anomalies; and they show pronounced negative anomalies in Ba, Sr, Ti, and Nb but significant positive anomalies in K, Rb, U, Th, and Pb on mantle-normalized trace element patterns, indicating typi-cally peraluminous to strongly peraluminous S-type granite. (2) The zircon SHRIMP U-Pb ages of the granite are 36.27±0.48 Ma for the samples from ZK7-1 and 35.78±0.49 Ma for those from ZK0-1, respectively. The similar zircon ages from these two drill cores may suggest that the granite samples come from the same buried pluton. (3) 206pb/204pb values of the granite vary from 20.115 to 25.359, 207pb/204pb from 15.776 to 16.160, and 208pb/204pb from 39.236 to 41.285, showing the characteristics of radio- active lead anomaly of the upper crust. The (87Sr/86Sr)i values calculated on the average age of the two-mica orthoclase granite (36 Ma) range from 0.72524 to 0.77503 and eNd(t) values vary from -10.9 to -11.7. These data, along with the depleted-mantle Nd modal ages of 1.73-1.80 Ga, imply that the granites might have formed from partial melting of the Precambrian crystal basements. (4) On the Hf-Rb-Ta diagram, almost all the samples fall within the field of post-collision tectonic setting. The CaO/Na2O and A1203/T
基金supported by the National Natural Science Foundation of China(Grant No.41672203)China Geological Survey(CGS)(Grant Nos.DD20190018,DD20160060,1212011120099,1212011120100,1212011220259).
文摘The Eurasian continent was subject to multiphase intensive intracontinental deformation in the Cenozoic(Fig.1A).However,its Cenozoic intra-continental deformation process and the driving force has long been disputed,which is only associated with the Indo-Asian collision(Molnar and Tapponnier,1975;Jolivet et al.,1990;Tapponnier et al.,2001;Yin,2010;Xu et al.,2013;Zhao et al.,2016),is caused by the Pacific-Asian collision(Cui,1997;Schellart and Lister,2005;Fan et al.,2019),or is connected with a combined effect of the Indo-Asian collision and the Pacific-Eurasia convergence(Ren et al.,2002;Li et al.,2013;Shi et al.,2015;Liu et al.,2019).
基金supported by the National Natural Science Foundation of China (Nos. 40572121 and 40234041)MOST Special Fund from the State Key Laboratory of Continental Dynamics, Northwest University
文摘The Nanyili (南一里), Laohegou (老河沟), and Shaiziyan (筛子岩) granitic intrusions are located in the southern margin of the Bikou (碧口) block in Pingwu (平武) area, Northwest Sichuan (四川). The petrography and geochemical characteristics of the granitic intrusions as well as their source and tectonic settings are reported and discussed in this article. The Laohegou and Shaiziyan granites are with high SiO2 (69.89 wt.%-73.05 wt.%) and Al2O3 contents, and A/CNK=1.04-1.12. They are typical strongly peraluminous granites, with supersaturation in AI and Si. The abundance of ∑REE varies in the range of (33.13-89.12)×10^-6. The rocks show an LREE enrichment pattern and obvious Eu negative anomaly. The trace element geochemistry is characterized evidently by a negative anomaly of Ta, Nb, Ti, etc. and a positive anomaly of Rb, Ba, Sr, etc.. Zircons of the Nanyili granite have higher Th/U ratios, and their CL images have internal oscillatory zoning, suggesting that the zircons of the samples are igneous in origin. The LA ICP-MS zircon U-Pb isotopic concordia diagram yields an age of 223.1±2.6 Ma (MSWD=1.4), which indicates that the granodiorite intrusions formed in the early Late Triassic. The Nanyili, Laohegou, and Shaiziyan granites have the characteristics of post-collisional granites and are regarded as post-orogenic granites. Thus, the granite intrusions are interpreted as syn-collisional granites that resulted from the crustal thickening caused by the collisions between the North China plate and the Yangtze plate during the Indosinian. The granitic intrusions formed in a transitional environment from syn- (compressional environment) to post-collision (extensional environment).
文摘As the Armor shape has a significant effect on the reduction of wave overtopping, this study compares the performance of various shapes of concrete armored blocks of X block and Tetrapod as the most suitable armors. In this study, a three-dimensional numerical model was used for simulation of the effects of waves on the armors of Tetrapod and X Block breakwaters. In this regard, in order to calibrate the numerical model, a sample of conventional stone armor has been selected and using available experimental data on the design of armor such as wave overtopping, wave height, period of waves and energy density of the required spectral range of wave verification was conducted on a numerical model. In this regard, it is necessary to calibrate all the conditions of the model including boundary conditions, numerical modeling, initial conditions, numerical solvers and other parameters in the numerical model and simulation error rate is determined. The maximum error of the numerical model for the relative height values of the impact waves on the structure of breakwater is 7.87% for different conditions. Accordingly, the maximum error of the numerical model in determining overtopping values is 7.81%. The average fluctuation value of overtopping in the X block armor has dropped by about 31% compared to the tetrapod armor.
文摘In the Early Mesozoic period intercontinental movements of the Junggar and Tuva-Mongolian lithosphere terranes were accompanied by the deformation of the Paleozoic tectonic substrate and by the formation of a new tectonic system of Inner Asia, the Altai collision belt. The qualitative change of the initial structure covered more than 30% ~35% of the region. and the zonal distribution of these new formations determined the belt configuration and inner peculiarities. Residual mosaic-block terranes of the Paleozoic substrate and specific collision systems are distinguished and described in this paper. The main elements of these structures are crumple zones (collision sutures). Analysis of the rock massif regional dynamometamorphism and the spatial distribution of stress-formations in Altai is the principal peculiarity of the method for recognizing the Early Mesozoic collision system. Tectonites of destruction zones (D-tectonites ) . cataclastic flow (C-tectonites ) and plastic flow (P-tectonites) are the members of these formations. Each kind of tectonites is specific for conditions of the initial substrate transformation during the collision and has its own indicator peculiarities. Isotopic dating of stress-formations in Altai gives 260~230 Ma.
文摘The new paleomagnetic data of the early Triassic Daye Formation from Hubei Province are reported. The ChRM passes consistency test and reversal test. Two magnetic components were isolated with principal component analysis (PCA). Component B is a ChRM and component A was acquired by remagnetization during lndosinian cycle. Rock magnetic study shows that the carrier is dominantly detrital magnetite. According to the data, in conjunction with recently published Triassic paleornagnetic results, mean paleopole of the Triassic Yangtze Block is calculated as 30.3°N, 198.4°E, α<sub>95</sub> = 9.2°.Distribution of all Triassic declinations indicates obviously local rotation in the mid-Yangtze areas,which results in consistence of the declinations with fold axes. By comparison with Triassic paleomagnetic data in the South China Block and some of geological evidence, it is inferred that the timing of the suture between the Yangtze Block and the South China Block is earlier in western part than in eastern part in the
基金financially supported by the Qinghai Science and Technology Department(Grant No.2016-ZJ752)Qinghai Salt Lake Industry(Grant No.E050DZ0801)。
文摘The Qilian Block(QB)is a Precambrian micro-continent located in the northeastern Qinghai–Tibet Plateau.Prevalent Lower Paleozoic granitic magmatic rocks crop out in the QB.A new integrated study of zircon U-Pb ages and systematic whole-rock geochemical data for the Xindian,Dongjiazhuang and Xiaogaoling granites in the eastern segment of the QB constrains their emplacement ages,petrogenesis,and regional evolutionary history.U-Pb dating reveals that the Xindian granite was emplaced 454 Ma,and both the Dongjiazhuang and Xiaogaoling granites were emplaced ca.440 Ma.Geochemical study shows that all granites belong to the high-K calc-alkaline to shoshonitic series and are S-type granites formed by partial melting of continental crust,mainly metagraywacke.We infer that these ca.454–445 Ma granites formed in a syn-collisional setting during the continental collisional between the Qaidam and Qilian blocks.