The mechanism of inclusion aggregation in liquid steel in swirling flow tundish is analyzed by applying the theory of flocculation which was developed in the field of colloid engineering. The gas bridge forces due to ...The mechanism of inclusion aggregation in liquid steel in swirling flow tundish is analyzed by applying the theory of flocculation which was developed in the field of colloid engineering. The gas bridge forces due to the micro bubbles on hydrophobic inclusion surfaces were responsible for the inclusion collision and agglomeration, which can avoid the aggregation to breakup. The quantity of micro bubbles on hydrophobic inclusion particle is more than that on hydrophilic one. The trend of forming gas bridges between micro bubbles on particles is strong in the course of collision. The liquid film on hydrophobic particles is easy to break during collision process. Hydrophobic particles are liable to aggregate in collision. According to the analysis of forces on a nonmetallic inclusion particle in swirling chamber, the chance of inclusion collision and aggregation can be improved by the centripetal force. Hydropbobic particles in water are liable to aggregate in collision. Hydrophilic particles in water are dispersed although collision happens. The wettability can be changed by changing solid-liquid interface tension. The nonmetallic inclusion removal in swirling flow tundish is studied. The result shows that under certain turbulent conditions, the.particle concentration and the wettability between particles and liquid steel are the main factors to induce collision and aggregation.展开更多
This paper studies a non-reciprocal swarm model that consists of a group of mobile autonomous agents with an attraction-repulsion function governing the interaction of the agents. The function is chosen to have infini...This paper studies a non-reciprocal swarm model that consists of a group of mobile autonomous agents with an attraction-repulsion function governing the interaction of the agents. The function is chosen to have infinitely large values of repulsion for vanishing distance between two agents so as to avoid occurrence of collision. It is shown analytically that under the detailed balance condition in coupling weights, all the agents will aggregate and eventually form a cohesive cluster of finite size around the weighted center of the swarm in a finite time. Moreover, the swarm system is completely stable, namely, the motion of all agents converge to the set of equilibrium points. For the general case of non-reciprocal swarms without the detailed balance condition, numerical simulations show that more complex self-organized oscillations can emerge in the swarms. The effect of noise on collective dynamics of the swarm is also examined with a white Gaussian noise model.展开更多
Inclusions with sizes less than 1 μm in molten steel are difficult to float up to the molten steel and slag interface owing to their slow terminal velocity. Thus, increasing the size of inclusion is essential for acc...Inclusions with sizes less than 1 μm in molten steel are difficult to float up to the molten steel and slag interface owing to their slow terminal velocity. Thus, increasing the size of inclusion is essential for accelerating the removal of inclusions. Polystyrene particles simulating inclusions in molten steel were quantified by direct observation of the particle collision behavior in a turbulent flow in a water model. The box-counting fractal dimension of particles was calculated by processing the binary images of aggregated particles. The fractal dimension of the outer contours of the single plastic particles was smaller than that of the aggregated particles. The fractal dimension was varied from 1.14 to 1.35. When two or more monomer particles collide, the aggregates are separated more easily, as the temperature increases from 40 to 80 ℃. The aggregated particles were loose and easy to separate in the high-temperature aqueous solution. The effect of temperature on the surface tension of liquid and the interracial tension of solid and liquid is obvious. The particles are wetting in the water solution at a temperature more than 60 ℃. The relationship between the velocity of the particles and the fractal dimension of the solid particles with the equivalent diameter was discussed.展开更多
This paper describes an empirical study aiming at identifying the main differences between different logistic regression models and collision data aggregation methods that are commonly applied in road safety literatur...This paper describes an empirical study aiming at identifying the main differences between different logistic regression models and collision data aggregation methods that are commonly applied in road safety literature for modeling collision severity. In particular, the research compares three popular multilevel logistic models (i.e., sequential binary logit models, ordered logit models, and multinomial logit models) as well as three data aggregation methods (i.e., occupant based, vehicle based, and collision based). Six years of collision data (2001-2006) from 31 highway routes from across the province of Ontario, Canada were used for this analysis. It was found that a multilevel multinomial logit model has the best fit to the data than the other two models while the results obtained from occupant-based data are more reliable than those from vehicle- and collision-based data. More importantly, while generally consistent in terms of factors that were found to be significant between different models and data aggregation methods, the effect size of each factor differ sub- stantially, which could have significant implications forevaluating the effects of different safety-related policies and countermeasures.展开更多
文摘The mechanism of inclusion aggregation in liquid steel in swirling flow tundish is analyzed by applying the theory of flocculation which was developed in the field of colloid engineering. The gas bridge forces due to the micro bubbles on hydrophobic inclusion surfaces were responsible for the inclusion collision and agglomeration, which can avoid the aggregation to breakup. The quantity of micro bubbles on hydrophobic inclusion particle is more than that on hydrophilic one. The trend of forming gas bridges between micro bubbles on particles is strong in the course of collision. The liquid film on hydrophobic particles is easy to break during collision process. Hydrophobic particles are liable to aggregate in collision. According to the analysis of forces on a nonmetallic inclusion particle in swirling chamber, the chance of inclusion collision and aggregation can be improved by the centripetal force. Hydropbobic particles in water are liable to aggregate in collision. Hydrophilic particles in water are dispersed although collision happens. The wettability can be changed by changing solid-liquid interface tension. The nonmetallic inclusion removal in swirling flow tundish is studied. The result shows that under certain turbulent conditions, the.particle concentration and the wettability between particles and liquid steel are the main factors to induce collision and aggregation.
基金supported by the National Natural Science Foundation of China (No.60674047, 60674050, 60528007)National 863 Program (No.2006AA04Z247,2006AA04Z258)+2 种基金11-5 project (No.A2120061303)SRFDP (No.20060001013)the Doctoral Fund and Youth Key Fund of North China University of Technology
文摘This paper studies a non-reciprocal swarm model that consists of a group of mobile autonomous agents with an attraction-repulsion function governing the interaction of the agents. The function is chosen to have infinitely large values of repulsion for vanishing distance between two agents so as to avoid occurrence of collision. It is shown analytically that under the detailed balance condition in coupling weights, all the agents will aggregate and eventually form a cohesive cluster of finite size around the weighted center of the swarm in a finite time. Moreover, the swarm system is completely stable, namely, the motion of all agents converge to the set of equilibrium points. For the general case of non-reciprocal swarms without the detailed balance condition, numerical simulations show that more complex self-organized oscillations can emerge in the swarms. The effect of noise on collective dynamics of the swarm is also examined with a white Gaussian noise model.
文摘Inclusions with sizes less than 1 μm in molten steel are difficult to float up to the molten steel and slag interface owing to their slow terminal velocity. Thus, increasing the size of inclusion is essential for accelerating the removal of inclusions. Polystyrene particles simulating inclusions in molten steel were quantified by direct observation of the particle collision behavior in a turbulent flow in a water model. The box-counting fractal dimension of particles was calculated by processing the binary images of aggregated particles. The fractal dimension of the outer contours of the single plastic particles was smaller than that of the aggregated particles. The fractal dimension was varied from 1.14 to 1.35. When two or more monomer particles collide, the aggregates are separated more easily, as the temperature increases from 40 to 80 ℃. The aggregated particles were loose and easy to separate in the high-temperature aqueous solution. The effect of temperature on the surface tension of liquid and the interracial tension of solid and liquid is obvious. The particles are wetting in the water solution at a temperature more than 60 ℃. The relationship between the velocity of the particles and the fractal dimension of the solid particles with the equivalent diameter was discussed.
基金supported by MTO in part through the Highway Infrastructure and Innovations Funding Program(HIIFP)
文摘This paper describes an empirical study aiming at identifying the main differences between different logistic regression models and collision data aggregation methods that are commonly applied in road safety literature for modeling collision severity. In particular, the research compares three popular multilevel logistic models (i.e., sequential binary logit models, ordered logit models, and multinomial logit models) as well as three data aggregation methods (i.e., occupant based, vehicle based, and collision based). Six years of collision data (2001-2006) from 31 highway routes from across the province of Ontario, Canada were used for this analysis. It was found that a multilevel multinomial logit model has the best fit to the data than the other two models while the results obtained from occupant-based data are more reliable than those from vehicle- and collision-based data. More importantly, while generally consistent in terms of factors that were found to be significant between different models and data aggregation methods, the effect size of each factor differ sub- stantially, which could have significant implications forevaluating the effects of different safety-related policies and countermeasures.