To consider the bending collapse of the pipes in the latticed frames, based on the multi-scale simulation, the collapsed parts of the pipe are meshed by the shell elements as micro-scaled models, and the other parts a...To consider the bending collapse of the pipes in the latticed frames, based on the multi-scale simulation, the collapsed parts of the pipe are meshed by the shell elements as micro-scaled models, and the other parts are meshed by beam elements macro-models. The incremental displacement constraint equations for the nodes on the section between the two models are established based on the plane section premise of classical beam theory. The method to introduce the constraint equations is derived based on the Updated Largrangian method. The location of the micro-model is predicted by the stress field of the beam element, and the length of the collapsed part is adjusted by the plastic energy in the micro model. Several examples are included to illustrate the efficiency and accuracy of this method.展开更多
基金Funded by the Key Science and Technology Project of State Grid Corporation of China under Grant No.GC-10-1006
文摘To consider the bending collapse of the pipes in the latticed frames, based on the multi-scale simulation, the collapsed parts of the pipe are meshed by the shell elements as micro-scaled models, and the other parts are meshed by beam elements macro-models. The incremental displacement constraint equations for the nodes on the section between the two models are established based on the plane section premise of classical beam theory. The method to introduce the constraint equations is derived based on the Updated Largrangian method. The location of the micro-model is predicted by the stress field of the beam element, and the length of the collapsed part is adjusted by the plastic energy in the micro model. Several examples are included to illustrate the efficiency and accuracy of this method.