Many strip materials are coiled after rolling process. The stresses are imposed on the material wound on the automatically controlled collapse mandrel under the coiling tension. The coiling process can be described by...Many strip materials are coiled after rolling process. The stresses are imposed on the material wound on the automatically controlled collapse mandrel under the coiling tension. The coiling process can be described by three typical cases: winding without automatic adjustment, winding with automatic adjustment and after mandrel removal. A new model of equations for predicting the stresses during the strip coiling process is built by consideration of the three cases respectively. By solving the equations of different typical cases, the radial stresses and tangential stress of the layers of coil can be calculated. Also, the coiling parameters, such as strip thickness, coiling tension and necking critical pressure, affecting the coil performance are investigated. It is believed that the present model can be used for design and control of the automatically controlled collapse mandrel.展开更多
Control precision of coiling temperature is one of the key factors affecting the profile shape and surface quality during the cooling process of hot rolled steel strip.For this reason,the core of temperature control p...Control precision of coiling temperature is one of the key factors affecting the profile shape and surface quality during the cooling process of hot rolled steel strip.For this reason,the core of temperature control precision is to establish an effective cooling mathematical model with self-learning function.Starting from this point,a cooling mathematical model with nonlinear structural characteristics is established in this paper for the cooling process of hot rolled steel strip.By the analysis of self-learning ability,key parameters of the mathematical model could be constantly corrected so as to improve temperature control precision and adaptive capability of the model.The site actual application results proved the stable performance and high control precision of the proposed mathematical model,which would lay a solid foundation to improve the steel product qualities.展开更多
文摘Many strip materials are coiled after rolling process. The stresses are imposed on the material wound on the automatically controlled collapse mandrel under the coiling tension. The coiling process can be described by three typical cases: winding without automatic adjustment, winding with automatic adjustment and after mandrel removal. A new model of equations for predicting the stresses during the strip coiling process is built by consideration of the three cases respectively. By solving the equations of different typical cases, the radial stresses and tangential stress of the layers of coil can be calculated. Also, the coiling parameters, such as strip thickness, coiling tension and necking critical pressure, affecting the coil performance are investigated. It is believed that the present model can be used for design and control of the automatically controlled collapse mandrel.
基金Project supported by the National Key Technology Research and Development Program (Grant No.2006BAE03A08)
文摘Control precision of coiling temperature is one of the key factors affecting the profile shape and surface quality during the cooling process of hot rolled steel strip.For this reason,the core of temperature control precision is to establish an effective cooling mathematical model with self-learning function.Starting from this point,a cooling mathematical model with nonlinear structural characteristics is established in this paper for the cooling process of hot rolled steel strip.By the analysis of self-learning ability,key parameters of the mathematical model could be constantly corrected so as to improve temperature control precision and adaptive capability of the model.The site actual application results proved the stable performance and high control precision of the proposed mathematical model,which would lay a solid foundation to improve the steel product qualities.