机器系统运动部件摩擦系数(coefficient of friction,COF)的实时监测是一项具有挑战性的难题,智能感知和数据技术的发展为利用摩擦学关联信息对摩擦系数进行预测提供了可能性。该文利用摩擦磨损试验过程中的声音、振动等多源摩擦关联信...机器系统运动部件摩擦系数(coefficient of friction,COF)的实时监测是一项具有挑战性的难题,智能感知和数据技术的发展为利用摩擦学关联信息对摩擦系数进行预测提供了可能性。该文利用摩擦磨损试验过程中的声音、振动等多源摩擦关联信息,形成时间截面化的摩擦信息数据集,针对摩擦系数拟合问题建立了K折交叉验证双层堆叠的回归集成模型,定义了范围性评估的评价指标,并通过多种载荷试验数据对模型进行了检验。结果表明所建立模型能够有效提炼摩擦信息的关联特性,从而实现对摩擦系数的准确拟合及预测,该方法对不同载荷条件数据具有通用性。展开更多
TiAlSiN coating was deposited on H13 hot work mould steel using cathodic arc ion plating(CAIP). The surface-interface morphologies and phases of the obtained coating were analyzed using field emission scanning elect...TiAlSiN coating was deposited on H13 hot work mould steel using cathodic arc ion plating(CAIP). The surface-interface morphologies and phases of the obtained coating were analyzed using field emission scanning electron microscopy(FESEM) and X-ray diffraction(XRD), respectively, and the morphologies, distributions of chemical elements and profiles of worn tracks were also researched using scanning electron microscopy(SEM), energy disperse spectroscopy(EDS), and optical microscope(OM), respectively. The friction-wear performances of TiAlSiN coating under oil lubricated and dry fiction conditions were investigated, and the wear mechanisms of TiAlSiN coating were discussed. The experimental results show that the coating is primarily composed of(Ti, Al)N, AlTiN, and TiN hard phases, Si_3N_4 exists between the(Ti, Al)N crystal grains, increasing the coating microhardness to 3200 HV. The TiAlSiN coating has excellent performances of reducing friction and wear resistance, the average coefficient of friction(COF) of TiAlSiN coating under oil lubricated condition is only 0.05, lowered than the average COF of 0.211 under dry friction condition, the wear rate decreases by about 81.2% compared with that under dry friction condition. The wear mechanism of TiAlSiN coating under oil lubricated and dry friction conditions is composed of abrasive wear, fatigue wear, and abrasive wear, respectively. The internal friction of oil lubrication is a main factor of decreasing fatigue wear.展开更多
A 40 Cr steel was formed into a chain-wheel using a warm extrusion technology. The surface roughness and micro-structure, micro-hardness and phases of the extruded samples at different temperatures were analyzed using...A 40 Cr steel was formed into a chain-wheel using a warm extrusion technology. The surface roughness and micro-structure, micro-hardness and phases of the extruded samples at different temperatures were analyzed using a three-dimensional optical microscope(OM), micro-hardness tester, and X-ray diffraction(XRD), respectively. The morphologies, chemical element distributions and phases of worn tracks at the extrusion temperatures of 550, 650 and 750 ℃ were analyzed using a scanning electron microscopy(SEM), energy disperse spectroscopy(EDS), and XRD, respectively. The friction-wear behaviors of extruded samples under oil-lubrication condition were observed using a wear test. And the effects of extrusion temperatures on the wear mechanism were discussed. The results show that residual austenite and pearlite exist on the sample at the extrusion temperature of 550 ℃ with the corresponding grain size and surface micro-hardness of 32.7 nm and 370.33 HV, respectively. The average coefficient of friction(COF) of extruded sample at the temperature of 550 ℃ is 0.196 5, and the wear mechanism is fatigue and abrasive wear. While the acicular martensite exists on the extruded samples at the extrusion temperatures of 650 and 750 ℃, the corresponding grain sizes are 30.0 and 29.1 nm, respectively. The average COF(coefficient of friction) of extruded sample at the temperatures of 650 and 750 ℃ are 0.187 4 and 0.163 6, respectively, and the wear mechanism is abrasive wear. As a result, the friction performance of extruded sample at the temperatures of 650 and 750 ℃ is better than that at the temperature of 550 ℃.展开更多
文摘机器系统运动部件摩擦系数(coefficient of friction,COF)的实时监测是一项具有挑战性的难题,智能感知和数据技术的发展为利用摩擦学关联信息对摩擦系数进行预测提供了可能性。该文利用摩擦磨损试验过程中的声音、振动等多源摩擦关联信息,形成时间截面化的摩擦信息数据集,针对摩擦系数拟合问题建立了K折交叉验证双层堆叠的回归集成模型,定义了范围性评估的评价指标,并通过多种载荷试验数据对模型进行了检验。结果表明所建立模型能够有效提炼摩擦信息的关联特性,从而实现对摩擦系数的准确拟合及预测,该方法对不同载荷条件数据具有通用性。
基金Funded by the Jiangsu Province Science and Technology Support Program(Industry)(BE2014865)
文摘TiAlSiN coating was deposited on H13 hot work mould steel using cathodic arc ion plating(CAIP). The surface-interface morphologies and phases of the obtained coating were analyzed using field emission scanning electron microscopy(FESEM) and X-ray diffraction(XRD), respectively, and the morphologies, distributions of chemical elements and profiles of worn tracks were also researched using scanning electron microscopy(SEM), energy disperse spectroscopy(EDS), and optical microscope(OM), respectively. The friction-wear performances of TiAlSiN coating under oil lubricated and dry fiction conditions were investigated, and the wear mechanisms of TiAlSiN coating were discussed. The experimental results show that the coating is primarily composed of(Ti, Al)N, AlTiN, and TiN hard phases, Si_3N_4 exists between the(Ti, Al)N crystal grains, increasing the coating microhardness to 3200 HV. The TiAlSiN coating has excellent performances of reducing friction and wear resistance, the average coefficient of friction(COF) of TiAlSiN coating under oil lubricated condition is only 0.05, lowered than the average COF of 0.211 under dry friction condition, the wear rate decreases by about 81.2% compared with that under dry friction condition. The wear mechanism of TiAlSiN coating under oil lubricated and dry friction conditions is composed of abrasive wear, fatigue wear, and abrasive wear, respectively. The internal friction of oil lubrication is a main factor of decreasing fatigue wear.
基金Funded by Jiangsu Province Science and Technology Support Program(Industry)(No.BE2014818)the Research Project of Scientific Research Innovation for Graduate Students of Jiangsu Province(No.KYLX16-0631)
文摘A 40 Cr steel was formed into a chain-wheel using a warm extrusion technology. The surface roughness and micro-structure, micro-hardness and phases of the extruded samples at different temperatures were analyzed using a three-dimensional optical microscope(OM), micro-hardness tester, and X-ray diffraction(XRD), respectively. The morphologies, chemical element distributions and phases of worn tracks at the extrusion temperatures of 550, 650 and 750 ℃ were analyzed using a scanning electron microscopy(SEM), energy disperse spectroscopy(EDS), and XRD, respectively. The friction-wear behaviors of extruded samples under oil-lubrication condition were observed using a wear test. And the effects of extrusion temperatures on the wear mechanism were discussed. The results show that residual austenite and pearlite exist on the sample at the extrusion temperature of 550 ℃ with the corresponding grain size and surface micro-hardness of 32.7 nm and 370.33 HV, respectively. The average coefficient of friction(COF) of extruded sample at the temperature of 550 ℃ is 0.196 5, and the wear mechanism is fatigue and abrasive wear. While the acicular martensite exists on the extruded samples at the extrusion temperatures of 650 and 750 ℃, the corresponding grain sizes are 30.0 and 29.1 nm, respectively. The average COF(coefficient of friction) of extruded sample at the temperatures of 650 and 750 ℃ are 0.187 4 and 0.163 6, respectively, and the wear mechanism is abrasive wear. As a result, the friction performance of extruded sample at the temperatures of 650 and 750 ℃ is better than that at the temperature of 550 ℃.