Kuqa depression bears not only plenty ofnatural gas, but also a large amount of condensate and smallquantity of crude oil. Based on the geochemical correlationbetween the Jurassic and Triassic terrestrial hydrocarbons...Kuqa depression bears not only plenty ofnatural gas, but also a large amount of condensate and smallquantity of crude oil. Based on the geochemical correlationbetween the Jurassic and Triassic terrestrial hydrocarbonsource rock, this paper confirms that the natural gas in Kuqadepression belongs to coal-type gas and the main gas sourcerock is attributed to the middle to lower Jurassic coal seriesformation, while the main oil source rock is the upper Tri-assic lacustrine mudstone. The authors indicated that Kuqadepression was slowly subsided in Mesozoic, but rapidlywent down in Late Tertiary, which made the Jurassic andTriassic source rock suddenly deep-buried and rapidlyevolved to high and over-mature phase since 5 Ma. TheTriassic source rock is postponed to the Early Miocene dur-ing 23-12 Ma when entering the oil-generating peak, whilethe Jurassic is suspended to the latest 5 Ma, especially since2.5 Ma to the dry gas-generating period, which is one of thecharacteristics of the source rock thermal evolution in Kuqadepression. This paper presents a two-stage trapping andlate gas trapping model in Kuqa depression whose charac-teristics are: The main oil and gas reservoirs have differentsources. The oil reservoir is formed early while the gas res-ervoir is formed lately. During the early stage, it, mainly asoil, takes long distance lateral migration, while in the laterstage, it, mainly as gas, takes the vertical migration and alsohas lateral migration. The trap formed in different time onthe south and north sides of the depression and evolved intoa distributional pattern with oil in the south part and gas inthe north, also oil on the outer ring and gas on the inner ring.This paper points out that the late trapping of the naturalgas in Kuqa depression is favorable for the preservation oflarge gas fields.展开更多
This study studied the characteristics and source apportionment of heavy metal pollution in the agricultural soil surrounding a gangue coal heap in Chongqing,China by using absolute principal component scores-multiple...This study studied the characteristics and source apportionment of heavy metal pollution in the agricultural soil surrounding a gangue coal heap in Chongqing,China by using absolute principal component scores-multiple linear regression(APCSMLR)model and positive matrix factorization(PMF)model.The applicability of the models was compared in the assessment of source apportionment.The results showed that the average contents of Cd,Hg,As,Pb,Cr,Cu,Ni,and Zn in the surface soil were 0.46,0.14,9.66,31.2,127,95.6,76.0,and 158 mg/kg,respectively.Combined with the spatial distribution and correlation analyses,the results of source apportionment were consistent for both the APCSMLR and PMF models.Cd,Hg,As,and Pb were mainly affected by the gangue heap accumulation,with respective contributions of 74.6%,79.4%,69.1%,and 67.2%based on the APCS-MLR model and respective contributions of 69.7%,60.7%,57.4%,and 41.9%based on the PMF model.Ni and Zn were mainly affected by industrial and agricultural activities,while Cr and Cu were mainly affected by natural factors.The results of the source apportionment were approximately consistent between the APCS-MLR and PMF models.The combined application of the two receptor models can make the results of source apportionment more comprehensive,accurate,and reliable.展开更多
文摘Kuqa depression bears not only plenty ofnatural gas, but also a large amount of condensate and smallquantity of crude oil. Based on the geochemical correlationbetween the Jurassic and Triassic terrestrial hydrocarbonsource rock, this paper confirms that the natural gas in Kuqadepression belongs to coal-type gas and the main gas sourcerock is attributed to the middle to lower Jurassic coal seriesformation, while the main oil source rock is the upper Tri-assic lacustrine mudstone. The authors indicated that Kuqadepression was slowly subsided in Mesozoic, but rapidlywent down in Late Tertiary, which made the Jurassic andTriassic source rock suddenly deep-buried and rapidlyevolved to high and over-mature phase since 5 Ma. TheTriassic source rock is postponed to the Early Miocene dur-ing 23-12 Ma when entering the oil-generating peak, whilethe Jurassic is suspended to the latest 5 Ma, especially since2.5 Ma to the dry gas-generating period, which is one of thecharacteristics of the source rock thermal evolution in Kuqadepression. This paper presents a two-stage trapping andlate gas trapping model in Kuqa depression whose charac-teristics are: The main oil and gas reservoirs have differentsources. The oil reservoir is formed early while the gas res-ervoir is formed lately. During the early stage, it, mainly asoil, takes long distance lateral migration, while in the laterstage, it, mainly as gas, takes the vertical migration and alsohas lateral migration. The trap formed in different time onthe south and north sides of the depression and evolved intoa distributional pattern with oil in the south part and gas inthe north, also oil on the outer ring and gas on the inner ring.This paper points out that the late trapping of the naturalgas in Kuqa depression is favorable for the preservation oflarge gas fields.
基金supported by Project of Chongqing Ecology and Environment Bureau(2021111)Project of Chongqing Science and Technology Bureau(cstc2022jxjl0005)。
文摘This study studied the characteristics and source apportionment of heavy metal pollution in the agricultural soil surrounding a gangue coal heap in Chongqing,China by using absolute principal component scores-multiple linear regression(APCSMLR)model and positive matrix factorization(PMF)model.The applicability of the models was compared in the assessment of source apportionment.The results showed that the average contents of Cd,Hg,As,Pb,Cr,Cu,Ni,and Zn in the surface soil were 0.46,0.14,9.66,31.2,127,95.6,76.0,and 158 mg/kg,respectively.Combined with the spatial distribution and correlation analyses,the results of source apportionment were consistent for both the APCSMLR and PMF models.Cd,Hg,As,and Pb were mainly affected by the gangue heap accumulation,with respective contributions of 74.6%,79.4%,69.1%,and 67.2%based on the APCS-MLR model and respective contributions of 69.7%,60.7%,57.4%,and 41.9%based on the PMF model.Ni and Zn were mainly affected by industrial and agricultural activities,while Cr and Cu were mainly affected by natural factors.The results of the source apportionment were approximately consistent between the APCS-MLR and PMF models.The combined application of the two receptor models can make the results of source apportionment more comprehensive,accurate,and reliable.