Combustion experiments for three coals of different ranks were conducted in an electrically-heated drop tube furnace. The size distributions of major elements in the residual ash particles (>0.4μm) such as Al, Si,...Combustion experiments for three coals of different ranks were conducted in an electrically-heated drop tube furnace. The size distributions of major elements in the residual ash particles (>0.4μm) such as Al, Si, S, P, Na, Mg, K, Ca and Fe were investigated. The experimental results showed that the con-centrations of Al and Si in the residual ash particles decreased with decreasing particle size, while the concentrations of S and P increased with decreasing particle size. No consistent size distributions were obtained for Na, Mg, K, Ca and Fe. The established deposition model accounting for trace element dis-tributions was demonstrated to be applicable to some major elements as well. The modeling results indicated that the size distributions of the refractory elements, Al and Si, were mainly influenced by the deposition of vaporized elements on particle surfaces. A dominant fraction of S and P vaporized during coal combustion. Their size distributions were determined by surface condensation, reaction or adsorption. The partitioning mechanisms of Na, Mg, K, Ca and Fe were more complex.展开更多
Research on coal fragmentation can play an important role in understanding coal and gas outbursts.The study discussed in this paper explored the fragmentation of gas-containing coal particles using the drop-weight imp...Research on coal fragmentation can play an important role in understanding coal and gas outbursts.The study discussed in this paper explored the fragmentation of gas-containing coal particles using the drop-weight impact method.The effects of equilibrium gas pressures and type of adsorbate gas on particle size distributions and fragmentation energy were investigated in detail.We found that the Fractal particle size distribution model can most effectively describe the crushed coal particle sizes.The equilibrium pressure and type of gas can influence the Fractal distribution parameter.The crushing energy is composed of energy to create new surfaces and other forms of energy that are dissipated but the equilibrium gas pressure and type of adsorption gas can affect energy consumption and crushing efficiency.This research will be of guiding significance to the intensity evaluation and mechanism understanding of coal and gas outbursts.展开更多
基金Supported by the National Natural Science Foundation of China (Grant Nos. 50706013, 50721005 & 50720145604)
文摘Combustion experiments for three coals of different ranks were conducted in an electrically-heated drop tube furnace. The size distributions of major elements in the residual ash particles (>0.4μm) such as Al, Si, S, P, Na, Mg, K, Ca and Fe were investigated. The experimental results showed that the con-centrations of Al and Si in the residual ash particles decreased with decreasing particle size, while the concentrations of S and P increased with decreasing particle size. No consistent size distributions were obtained for Na, Mg, K, Ca and Fe. The established deposition model accounting for trace element dis-tributions was demonstrated to be applicable to some major elements as well. The modeling results indicated that the size distributions of the refractory elements, Al and Si, were mainly influenced by the deposition of vaporized elements on particle surfaces. A dominant fraction of S and P vaporized during coal combustion. Their size distributions were determined by surface condensation, reaction or adsorption. The partitioning mechanisms of Na, Mg, K, Ca and Fe were more complex.
基金support from the Science and Technology Foundation of Guizhou Province(No.[2017]2815)the Fundamental Research Funds for the Central Universities(No.2020YJSAQ05)the National Natural Science Foundation of China(Nos.51274206,51404277)。
文摘Research on coal fragmentation can play an important role in understanding coal and gas outbursts.The study discussed in this paper explored the fragmentation of gas-containing coal particles using the drop-weight impact method.The effects of equilibrium gas pressures and type of adsorbate gas on particle size distributions and fragmentation energy were investigated in detail.We found that the Fractal particle size distribution model can most effectively describe the crushed coal particle sizes.The equilibrium pressure and type of gas can influence the Fractal distribution parameter.The crushing energy is composed of energy to create new surfaces and other forms of energy that are dissipated but the equilibrium gas pressure and type of adsorption gas can affect energy consumption and crushing efficiency.This research will be of guiding significance to the intensity evaluation and mechanism understanding of coal and gas outbursts.