This paper mainly discusses fractional differential approach to detecting textural features of digital image and its fractional differential filter. Firstly, both the geo- metric meaning and the kinetic physical meani...This paper mainly discusses fractional differential approach to detecting textural features of digital image and its fractional differential filter. Firstly, both the geo- metric meaning and the kinetic physical meaning of fractional differential are clearly explained in view of information theory and kinetics, respectively. Secondly, it puts forward and discusses the definitions and theories of fractional stationary point, fractional equilibrium coefficient, fractional stable coefficient, and fractional grayscale co-occurrence matrix. At the same time, it particularly discusses frac- tional grayscale co-occurrence matrix approach to detecting textural features of digital image. Thirdly, it discusses in detail the structures and parameters of nxn any order fractional differential mask on negative x-coordinate, positive x-coordi- nate, negative y-coordinate, positive y-coordinate, left downward diagonal, left upward diagonal, right downward diagonal, and right upward diagonal, respectively. Furthermore, it discusses the numerical implementation algorithms of fractional differential mask for digital image. Lastly, based on the above-mentioned discus- sion, it puts forward and discusses the theory and implementation of fractional differential filter for digital image. Experiments show that the fractional differential-based image operator has excellent feedback for enhancing the textural details of rich-grained digital images.展开更多
本文利用Web of Science数据库,构建出数学、电化学、信息计量学和传播学4个领域的高频共关键词网络。用于反映领域核心知识。此类网络以关键词为节点,当两个关键词用于同一论文中时就形成节点之间的连接。核心/边缘分析和网络分析...本文利用Web of Science数据库,构建出数学、电化学、信息计量学和传播学4个领域的高频共关键词网络。用于反映领域核心知识。此类网络以关键词为节点,当两个关键词用于同一论文中时就形成节点之间的连接。核心/边缘分析和网络分析参数表明核心关键词数量增长速度低于关键词总量增速。依据核心关键词表达核心知识概念的逻辑,推论特定知识领域中稳定的核心概念及其共现网络反映了该领域相对稳定的核心知识及其结构。展开更多
Based on the stability and inequality of texture features between coal and rock,this study used the digital image analysis technique to propose a coal–rock interface detection method.By using gray level co-occurrence...Based on the stability and inequality of texture features between coal and rock,this study used the digital image analysis technique to propose a coal–rock interface detection method.By using gray level co-occurrence matrix,twenty-two texture features were extracted from the images of coal and rock.Data dimension of the feature space reduced to four by feature selection,which was according to a separability criterion based on inter-class mean difference and within-class scatter.The experimental results show that the optimized features were effective in improving the separability of the samples and reducing the time complexity of the algorithm.In the optimized low-dimensional feature space,the coal–rock classifer was set up using the fsher discriminant method.Using the 10-fold cross-validation technique,the performance of the classifer was evaluated,and an average recognition rate of 94.12%was obtained.The results of comparative experiments show that the identifcation performance of the proposed method was superior to the texture description method based on gray histogram and gradient histogram.展开更多
基金Supported by China Postdoctoral Science Foundation (Grant No. 20060401016), Fondation Franco-Chinoise Pour La Science Et Ses Applications (FFCSA)the National Natural Science Foundation of China (Grant No. 60572033)the Doctor Foundation of China National Education Department (Grant No. 20060610021)
文摘This paper mainly discusses fractional differential approach to detecting textural features of digital image and its fractional differential filter. Firstly, both the geo- metric meaning and the kinetic physical meaning of fractional differential are clearly explained in view of information theory and kinetics, respectively. Secondly, it puts forward and discusses the definitions and theories of fractional stationary point, fractional equilibrium coefficient, fractional stable coefficient, and fractional grayscale co-occurrence matrix. At the same time, it particularly discusses frac- tional grayscale co-occurrence matrix approach to detecting textural features of digital image. Thirdly, it discusses in detail the structures and parameters of nxn any order fractional differential mask on negative x-coordinate, positive x-coordi- nate, negative y-coordinate, positive y-coordinate, left downward diagonal, left upward diagonal, right downward diagonal, and right upward diagonal, respectively. Furthermore, it discusses the numerical implementation algorithms of fractional differential mask for digital image. Lastly, based on the above-mentioned discus- sion, it puts forward and discusses the theory and implementation of fractional differential filter for digital image. Experiments show that the fractional differential-based image operator has excellent feedback for enhancing the textural details of rich-grained digital images.
文摘本文利用Web of Science数据库,构建出数学、电化学、信息计量学和传播学4个领域的高频共关键词网络。用于反映领域核心知识。此类网络以关键词为节点,当两个关键词用于同一论文中时就形成节点之间的连接。核心/边缘分析和网络分析参数表明核心关键词数量增长速度低于关键词总量增速。依据核心关键词表达核心知识概念的逻辑,推论特定知识领域中稳定的核心概念及其共现网络反映了该领域相对稳定的核心知识及其结构。
基金the National Natural Science Foundation of China(No.51134024/E0422)for the financial support
文摘Based on the stability and inequality of texture features between coal and rock,this study used the digital image analysis technique to propose a coal–rock interface detection method.By using gray level co-occurrence matrix,twenty-two texture features were extracted from the images of coal and rock.Data dimension of the feature space reduced to four by feature selection,which was according to a separability criterion based on inter-class mean difference and within-class scatter.The experimental results show that the optimized features were effective in improving the separability of the samples and reducing the time complexity of the algorithm.In the optimized low-dimensional feature space,the coal–rock classifer was set up using the fsher discriminant method.Using the 10-fold cross-validation technique,the performance of the classifer was evaluated,and an average recognition rate of 94.12%was obtained.The results of comparative experiments show that the identifcation performance of the proposed method was superior to the texture description method based on gray histogram and gradient histogram.