An inherent self-heating effect of the silicon-on-insulator (SOI) devices limits their application at high current levels. In this paper a novel solution to reduce the self-heating effect is proposed, based on N+ and ...An inherent self-heating effect of the silicon-on-insulator (SOI) devices limits their application at high current levels. In this paper a novel solution to reduce the self-heating effect is proposed, based on N+ and O+ co-implantation into silicon wafer to form a new buried layer structure. This new structure was simulated using Medici program, and the temperature distribution and output characteristics were compared with those of the conventional SOI counterparts. As expected, a reduction of self-heating effect in the novel SOI device was observed.展开更多
In this paper, a method to fabricate Silicon-on-Nothing (SON) MOSFETs using H^+ and He^+ co-implantation is presented. The technique is compatible with conventional CMOS technology and its feasibility has been exp...In this paper, a method to fabricate Silicon-on-Nothing (SON) MOSFETs using H^+ and He^+ co-implantation is presented. The technique is compatible with conventional CMOS technology and its feasibility has been experimentally demonstrated. SON MOSFETs with 50nm gate length have been fabricated. Compared with the corresponding bulk MOSFETs, the SON MOSFETs show higher on current, reduced leakage current and lower subthreshold slope.展开更多
H_5 photonic crystal(PC) microcavities co-implanted with erbium(Er) and oxygen(O) ions were fabricated on silicon-on-insulator(SOI) wafers.Photoluminescence(PL) measurements were taken at room temperature an...H_5 photonic crystal(PC) microcavities co-implanted with erbium(Er) and oxygen(O) ions were fabricated on silicon-on-insulator(SOI) wafers.Photoluminescence(PL) measurements were taken at room temperature and a light extraction enhancement of up to 12 was obtained at 1.54μm,as compared to an identically implanted unpatterned SOI wafer.In addition,we also explored the adjustment of cavity modes by changing the structural parameters of the PC,and the measured results showed that the cavity-resonant peaks shifted towards shorter wavelengths as the radius of the air holes increased,which is consistent with the theoretical simulation.展开更多
The microstructure and optical properties of a buried layer formed by O<sup>+</sup>(200keV,1.8×10<sup>18</sup>/cm<sup>2</sup>)and N<sup>+</sup>(180 keV,4×10<...The microstructure and optical properties of a buried layer formed by O<sup>+</sup>(200keV,1.8×10<sup>18</sup>/cm<sup>2</sup>)and N<sup>+</sup>(180 keV,4×10<sup>17</sup>/cm<sup>2</sup>)co-implantation and annealed at 1200℃for 2 h have been investigated by Auger electron,IR absorption and reflection spectroscopicmeasurements.The results show that the buried layer consists of silicon dioxide and SiO<sub>x</sub>(x【 2)and the nitrogen segregates to the wings of the buried layer where it forms an oxynitride.Bydetail theoretical analysis and computer simulation of the IR reflection interference spectrum,therefractive index profiles of the buried layer were obtained.展开更多
针对纳米PMOS器件超浅结工艺面临的硼扩散问题,开展了预非晶化与激光退火和碳共注入结合的超浅结实验,通过透射式电子显微镜(TEM),二次离子质谱(SIMS),扩展电阻法(SRP)等测试对超浅结特性进行评估。结果表明,采用激光退火和碳共注入的...针对纳米PMOS器件超浅结工艺面临的硼扩散问题,开展了预非晶化与激光退火和碳共注入结合的超浅结实验,通过透射式电子显微镜(TEM),二次离子质谱(SIMS),扩展电阻法(SRP)等测试对超浅结特性进行评估。结果表明,采用激光退火和碳共注入的方式可有效抑制硼扩散和减小结深。锗预非晶化后5 ke V,1×10^(15)/cm^2条件下注入的硼在激光退火(波长532 nm、脉冲宽度小于20 ns、能量密度0.25 J/cm^2)中的再扩散量非常小,退火后结深较注入结深仅增加6 nm,但激活率仅为24%。相同的硼掺杂条件下采用碳的共注入,常规快速热退火下的结深较未注碳样品减小49%,而且实现了84%的硼激活率。在单项实验基础上,进一步将预非晶化和碳共注入技术应用于纳米尺度器件制作,实验制备了亚50 nm PMOS器件,器件在Vdd=-1.2 V时的电流开关比大于104,亚阈值斜率为100 m V/dec,漏致势垒降低(DIBL)值为104 m V/V。展开更多
The composition, phase structure and microstructure of the discontinuous multilayer film[NiFeCo(10 nm)/Ag(10 nm)]×20 were investigated after Co ion implantation and annealing at 280, 320,360 and 400℃, respec...The composition, phase structure and microstructure of the discontinuous multilayer film[NiFeCo(10 nm)/Ag(10 nm)]×20 were investigated after Co ion implantation and annealing at 280, 320,360 and 400℃, respectively.GMR (giant magnetoresistance) ratio of the film with/without Co ion implantation was measured. The results showed that Co ion implantation decreased the granule size of the annealed multilayer film, and increased Hc value and GMR ratio of the multilayer film. After annealing at 360℃, the multilayer film [NiFeCo(10 nm)/Ag(10 nm)]×20 with/without Co ion implantation both exhibited the highest GMR ratio of 12.4%/11% under 79.6 kA/m of applied saturation magnetic field.展开更多
基金Supported by the Special Funds for Major State Basic Research Projects(NO.G20000365)and the National Natural Science Foundation of China(No.90101012)
文摘An inherent self-heating effect of the silicon-on-insulator (SOI) devices limits their application at high current levels. In this paper a novel solution to reduce the self-heating effect is proposed, based on N+ and O+ co-implantation into silicon wafer to form a new buried layer structure. This new structure was simulated using Medici program, and the temperature distribution and output characteristics were compared with those of the conventional SOI counterparts. As expected, a reduction of self-heating effect in the novel SOI device was observed.
基金Project supported by National Natural Science Foundation of China (Grant No 90207004) and State Key Fundamental Research Project of China.
文摘In this paper, a method to fabricate Silicon-on-Nothing (SON) MOSFETs using H^+ and He^+ co-implantation is presented. The technique is compatible with conventional CMOS technology and its feasibility has been experimentally demonstrated. SON MOSFETs with 50nm gate length have been fabricated. Compared with the corresponding bulk MOSFETs, the SON MOSFETs show higher on current, reduced leakage current and lower subthreshold slope.
基金Project supported by the National Key Basic Research Special Fund of China(No.2007CB613404)the National High Technology Research and Development Program of China(No.2011AA010303)the National Natural Science Foundation of China(Nos.61090390, 60837001,60977045,60877014,60776057)
文摘H_5 photonic crystal(PC) microcavities co-implanted with erbium(Er) and oxygen(O) ions were fabricated on silicon-on-insulator(SOI) wafers.Photoluminescence(PL) measurements were taken at room temperature and a light extraction enhancement of up to 12 was obtained at 1.54μm,as compared to an identically implanted unpatterned SOI wafer.In addition,we also explored the adjustment of cavity modes by changing the structural parameters of the PC,and the measured results showed that the cavity-resonant peaks shifted towards shorter wavelengths as the radius of the air holes increased,which is consistent with the theoretical simulation.
文摘The microstructure and optical properties of a buried layer formed by O<sup>+</sup>(200keV,1.8×10<sup>18</sup>/cm<sup>2</sup>)and N<sup>+</sup>(180 keV,4×10<sup>17</sup>/cm<sup>2</sup>)co-implantation and annealed at 1200℃for 2 h have been investigated by Auger electron,IR absorption and reflection spectroscopicmeasurements.The results show that the buried layer consists of silicon dioxide and SiO<sub>x</sub>(x【 2)and the nitrogen segregates to the wings of the buried layer where it forms an oxynitride.Bydetail theoretical analysis and computer simulation of the IR reflection interference spectrum,therefractive index profiles of the buried layer were obtained.
文摘针对纳米PMOS器件超浅结工艺面临的硼扩散问题,开展了预非晶化与激光退火和碳共注入结合的超浅结实验,通过透射式电子显微镜(TEM),二次离子质谱(SIMS),扩展电阻法(SRP)等测试对超浅结特性进行评估。结果表明,采用激光退火和碳共注入的方式可有效抑制硼扩散和减小结深。锗预非晶化后5 ke V,1×10^(15)/cm^2条件下注入的硼在激光退火(波长532 nm、脉冲宽度小于20 ns、能量密度0.25 J/cm^2)中的再扩散量非常小,退火后结深较注入结深仅增加6 nm,但激活率仅为24%。相同的硼掺杂条件下采用碳的共注入,常规快速热退火下的结深较未注碳样品减小49%,而且实现了84%的硼激活率。在单项实验基础上,进一步将预非晶化和碳共注入技术应用于纳米尺度器件制作,实验制备了亚50 nm PMOS器件,器件在Vdd=-1.2 V时的电流开关比大于104,亚阈值斜率为100 m V/dec,漏致势垒降低(DIBL)值为104 m V/V。
基金support by the National Natural Science Foundation of China under grant No.59771026.
文摘The composition, phase structure and microstructure of the discontinuous multilayer film[NiFeCo(10 nm)/Ag(10 nm)]×20 were investigated after Co ion implantation and annealing at 280, 320,360 and 400℃, respectively.GMR (giant magnetoresistance) ratio of the film with/without Co ion implantation was measured. The results showed that Co ion implantation decreased the granule size of the annealed multilayer film, and increased Hc value and GMR ratio of the multilayer film. After annealing at 360℃, the multilayer film [NiFeCo(10 nm)/Ag(10 nm)]×20 with/without Co ion implantation both exhibited the highest GMR ratio of 12.4%/11% under 79.6 kA/m of applied saturation magnetic field.
基金Supported by the National Natural Science Foundation of China(11564043,11504322,11704330)Joint Foundation of Provincial Sci⁃ence and Technology Department-Double First-class Construction of Yunnan University(2019FY003016)+2 种基金the Reserve Talents of Academic and Technical Leader Project(2017HB001)Young Top Talent Project(YNWR-QNBJ-2018-229)the Application Basic Research Project(2019FB130)of Yunnan Province。