The aromatization of light alkenes in liquefied petroleum gas (LPG) with and without dimethyl ether (DME) addition in the feed was investigated on a modified ZSM-5 catalyst.The results showed that under the given reac...The aromatization of light alkenes in liquefied petroleum gas (LPG) with and without dimethyl ether (DME) addition in the feed was investigated on a modified ZSM-5 catalyst.The results showed that under the given reaction conditions the selectivity of alkenes to high-octane gasoline blending components was markedly enhanced and the formation of propane and butanes was greatly suppressed with the addition of DME.It was also found that the distribution of C5+ components was changed a lot with DME addition into the LPG feed.The formation of branched hydrocarbons (mainly C6 C8 i-paraffin) and multi-methyl substituted aromatics,which are high octane number gasoline blending components,was promoted significantly,while the content of n-paraffins and olefins in C5+ components was decreased obviously,indicating that in addition to the oligomerization,cracking,hydrogen-transfer and dehydrogenation-cyclization of alkenes,the methylation of the formed aromatics and olefins intermediates also plays an important role in determining the product distribution due to the high reactivity of surface methoxy groups formed by DME.And this process,in combination with the syngas-to-methanol/DME technology,provides an alternative way to the production of high-octane gasoline from coal,natural gas or renewable raw materials.展开更多
采用四丙基氢氧化铵(TPAOH)处理HZSM-5分子筛,并负载金属Mo.利用XRD、低温氮气吸附、27Al MAS NMR、29Si MAS NMR和NH3-TPD等表征技术对TPAOH改性前后催化剂的结构和酸性进行了研究,考察了其对甲烷甲醇共芳构化反应的催化性能.结构表征...采用四丙基氢氧化铵(TPAOH)处理HZSM-5分子筛,并负载金属Mo.利用XRD、低温氮气吸附、27Al MAS NMR、29Si MAS NMR和NH3-TPD等表征技术对TPAOH改性前后催化剂的结构和酸性进行了研究,考察了其对甲烷甲醇共芳构化反应的催化性能.结构表征结果表明,适量的TPAOH改性可提高HZSM-5分子筛的相对结晶度,样品中介孔含量明显增加并且弱酸量和强酸量也有所增加.反应性能测试表明,以6%Mo负载的HZSM-5(6Mo/HZSM-5)为催化剂,在700℃、甲烷体积空速为2000 h-1的反应条件下,甲烷中添加少量甲醇(nCH4/nCH3OH=20)时,甲烷转化率稳定在10%左右,苯选择性在70%以上,C7-C9高碳芳烃的选择性为4%.在0.1mol/L TPAOH改性6Mo/HZSM-5催化剂上,甲烷转化率为8%左右,苯选择性稳定在60%以上,C7-C9高碳芳烃的选择性提升到10%~17%.利用TG和TPO技术对反应后样品的积碳情况进行了表征,发现甲烷甲醇共进料时催化剂积碳量由甲烷单独进料时的15%降低至5%,0.1mol/L的TPAOH改性后积碳量则进一步降低至1.4%.TPAOH改性的催化剂上介孔含量的增加和强酸中心上的稠环芳烃含量的减少是反应后积碳量显著下降的主要原因,这有利于提高芳构化催化剂的稳定性和碳原子的有效利用率.展开更多
基金supported by the "Action Plan of CAS to Support China’s New and Strategic Industries with Science and Technology(2012-2014)"the "Knowledge Innovation Program of the Chinese Academy of Sciences(S201041)""Youth Innovation Promotion Association CAS(2012-2015)"
文摘The aromatization of light alkenes in liquefied petroleum gas (LPG) with and without dimethyl ether (DME) addition in the feed was investigated on a modified ZSM-5 catalyst.The results showed that under the given reaction conditions the selectivity of alkenes to high-octane gasoline blending components was markedly enhanced and the formation of propane and butanes was greatly suppressed with the addition of DME.It was also found that the distribution of C5+ components was changed a lot with DME addition into the LPG feed.The formation of branched hydrocarbons (mainly C6 C8 i-paraffin) and multi-methyl substituted aromatics,which are high octane number gasoline blending components,was promoted significantly,while the content of n-paraffins and olefins in C5+ components was decreased obviously,indicating that in addition to the oligomerization,cracking,hydrogen-transfer and dehydrogenation-cyclization of alkenes,the methylation of the formed aromatics and olefins intermediates also plays an important role in determining the product distribution due to the high reactivity of surface methoxy groups formed by DME.And this process,in combination with the syngas-to-methanol/DME technology,provides an alternative way to the production of high-octane gasoline from coal,natural gas or renewable raw materials.
文摘采用四丙基氢氧化铵(TPAOH)处理HZSM-5分子筛,并负载金属Mo.利用XRD、低温氮气吸附、27Al MAS NMR、29Si MAS NMR和NH3-TPD等表征技术对TPAOH改性前后催化剂的结构和酸性进行了研究,考察了其对甲烷甲醇共芳构化反应的催化性能.结构表征结果表明,适量的TPAOH改性可提高HZSM-5分子筛的相对结晶度,样品中介孔含量明显增加并且弱酸量和强酸量也有所增加.反应性能测试表明,以6%Mo负载的HZSM-5(6Mo/HZSM-5)为催化剂,在700℃、甲烷体积空速为2000 h-1的反应条件下,甲烷中添加少量甲醇(nCH4/nCH3OH=20)时,甲烷转化率稳定在10%左右,苯选择性在70%以上,C7-C9高碳芳烃的选择性为4%.在0.1mol/L TPAOH改性6Mo/HZSM-5催化剂上,甲烷转化率为8%左右,苯选择性稳定在60%以上,C7-C9高碳芳烃的选择性提升到10%~17%.利用TG和TPO技术对反应后样品的积碳情况进行了表征,发现甲烷甲醇共进料时催化剂积碳量由甲烷单独进料时的15%降低至5%,0.1mol/L的TPAOH改性后积碳量则进一步降低至1.4%.TPAOH改性的催化剂上介孔含量的增加和强酸中心上的稠环芳烃含量的减少是反应后积碳量显著下降的主要原因,这有利于提高芳构化催化剂的稳定性和碳原子的有效利用率.