The continuous growth of air traffic has led to acute airspace congestion and severe delays, which threatens operation safety and cause enormous economic loss. Flight assignment is an economical and effective strategi...The continuous growth of air traffic has led to acute airspace congestion and severe delays, which threatens operation safety and cause enormous economic loss. Flight assignment is an economical and effective strategic plan to reduce the flight delay and airspace congestion by rea- sonably regulating the air traffic flow of China. However, it is a large-scale combinatorial optimiza- tion problem which is difficult to solve. In order to improve the quality of solutions, an effective multi-objective parallel evolution algorithm (MPEA) framework with dynamic migration interval strategy is presented in this work. Firstly, multiple evolution populations are constructed to solve the problem simultaneously to enhance the optimization capability. Then a new strategy is pro- posed to dynamically change the migration interval among different evolution populations to improve the efficiency of the cooperation of populations. Finally, the cooperative co-evolution (CC) algorithm combined with non-dominated sorting genetic algorithm II (NSGA-II) is intro- duced for each population. Empirical studies using the real air traffic data of the Chinese air route network and daily flight plans show that our method outperforms the existing approaches, multi- objective genetic algorithm (MOGA), multi-objective evolutionary algorithm based on decom- position (MOEA/D), CC-based multi-objective algorithm (CCMA) as well as other two MPEAs with different migration interval strategies.展开更多
To implement self-adaptive control parameters, a hybrid differential evolution algorithm integrated with particle swarm optimization (PSODE) is proposed. In the PSODE, control parameters are encoded to be a symbioti...To implement self-adaptive control parameters, a hybrid differential evolution algorithm integrated with particle swarm optimization (PSODE) is proposed. In the PSODE, control parameters are encoded to be a symbiotic individual of original individual, and each original individual has its own symbiotic individual. Differential evolution ( DE) operators are used to evolve the original population. And, particle swarm optimization (PSO) is applied to co-evolving the symbiotic population. Thus, with the evolution of the original population in PSODE, the symbiotic population is dynamically and self-adaptively adjusted and the realtime optimum control parameters are obtained. The proposed algorithm is compared with some DE variants on nine functious. The results show that the average performance of PSODE is the best.展开更多
传统的配电网故障恢复算法难于同时兼顾恢复过程的快速性和恢复策略的最优化。文章提出一种将启发式搜索算法与优化算法相结合的配电网故障阶段式恢复策略:第一阶段采用启发式搜索方法恢复负荷供电;第二阶段利用优化算法处理过载的负荷...传统的配电网故障恢复算法难于同时兼顾恢复过程的快速性和恢复策略的最优化。文章提出一种将启发式搜索算法与优化算法相结合的配电网故障阶段式恢复策略:第一阶段采用启发式搜索方法恢复负荷供电;第二阶段利用优化算法处理过载的负荷转移;第三阶段按启发式搜索方法处理过载负荷的切除。为实现快速的网络拓扑分析,采用家族树结构表征配电网,并对传统的粒子群优化(particle swarm optimization,PSO)算法与模拟退火(simulated annealing,SA)优化算法进行改进,提出了协同进化算法(co-evolutionary algorithm of PSO and SA,CPSOSA),CPSOSA算法在求解故障恢复数学模型时具有较高的全局寻优能力。算例分析证明了本文所提恢复策略及算法的可行性和高效性。展开更多
基金co-supported by the Foundation for Innovative Research Groups of the National Natural Science Foundation of China (No. 60921001)
文摘The continuous growth of air traffic has led to acute airspace congestion and severe delays, which threatens operation safety and cause enormous economic loss. Flight assignment is an economical and effective strategic plan to reduce the flight delay and airspace congestion by rea- sonably regulating the air traffic flow of China. However, it is a large-scale combinatorial optimiza- tion problem which is difficult to solve. In order to improve the quality of solutions, an effective multi-objective parallel evolution algorithm (MPEA) framework with dynamic migration interval strategy is presented in this work. Firstly, multiple evolution populations are constructed to solve the problem simultaneously to enhance the optimization capability. Then a new strategy is pro- posed to dynamically change the migration interval among different evolution populations to improve the efficiency of the cooperation of populations. Finally, the cooperative co-evolution (CC) algorithm combined with non-dominated sorting genetic algorithm II (NSGA-II) is intro- duced for each population. Empirical studies using the real air traffic data of the Chinese air route network and daily flight plans show that our method outperforms the existing approaches, multi- objective genetic algorithm (MOGA), multi-objective evolutionary algorithm based on decom- position (MOEA/D), CC-based multi-objective algorithm (CCMA) as well as other two MPEAs with different migration interval strategies.
基金National Key Basic Research Project of China(973 program)(No.2013CB733600)National Natural Science Foundation of China(No.21176073)+1 种基金Program for New Century Excellent Talents in University,China(No.NCET-09-0346)the Fundamental Research Funds for the Central Universities,China
文摘To implement self-adaptive control parameters, a hybrid differential evolution algorithm integrated with particle swarm optimization (PSODE) is proposed. In the PSODE, control parameters are encoded to be a symbiotic individual of original individual, and each original individual has its own symbiotic individual. Differential evolution ( DE) operators are used to evolve the original population. And, particle swarm optimization (PSO) is applied to co-evolving the symbiotic population. Thus, with the evolution of the original population in PSODE, the symbiotic population is dynamically and self-adaptively adjusted and the realtime optimum control parameters are obtained. The proposed algorithm is compared with some DE variants on nine functious. The results show that the average performance of PSODE is the best.
文摘传统的配电网故障恢复算法难于同时兼顾恢复过程的快速性和恢复策略的最优化。文章提出一种将启发式搜索算法与优化算法相结合的配电网故障阶段式恢复策略:第一阶段采用启发式搜索方法恢复负荷供电;第二阶段利用优化算法处理过载的负荷转移;第三阶段按启发式搜索方法处理过载负荷的切除。为实现快速的网络拓扑分析,采用家族树结构表征配电网,并对传统的粒子群优化(particle swarm optimization,PSO)算法与模拟退火(simulated annealing,SA)优化算法进行改进,提出了协同进化算法(co-evolutionary algorithm of PSO and SA,CPSOSA),CPSOSA算法在求解故障恢复数学模型时具有较高的全局寻优能力。算例分析证明了本文所提恢复策略及算法的可行性和高效性。