A cnoidal wave solution of the two dimensional RLW equation of are obtained by elliptic integral method. and the some estimations the uniqueness and the stability of the periodic solution with both x, y to the Cauchy ...A cnoidal wave solution of the two dimensional RLW equation of are obtained by elliptic integral method. and the some estimations the uniqueness and the stability of the periodic solution with both x, y to the Cauchy problem are proved by the priori estimations.展开更多
In this paper,the truncated Painlev′e analysis,nonlocal symmetry,Bcklund transformation of the(2+1)-dimensional modified Bogoyavlenskii–Schiff equation are presented.Then the nonlocal symmetry is localized to the...In this paper,the truncated Painlev′e analysis,nonlocal symmetry,Bcklund transformation of the(2+1)-dimensional modified Bogoyavlenskii–Schiff equation are presented.Then the nonlocal symmetry is localized to the corresponding nonlocal group by the prolonged system.In addition,the(2+1)-dimensional modified Bogoyavlenskii–Schiff is proved consistent Riccati expansion(CRE) solvable.As a result,the soliton–cnoidal wave interaction solutions of the equation are explicitly given,which are difficult to find by other traditional methods.Moreover figures are given out to show the properties of the explicit analytic interaction solutions.展开更多
For the (2+1)-dimensional Broer–Kaup–Kupershmidt(BKK) system, the nonlocal symmetries related to the Schwarzian variable and the corresponding transformation group are found. Moreover, the integrability of the ...For the (2+1)-dimensional Broer–Kaup–Kupershmidt(BKK) system, the nonlocal symmetries related to the Schwarzian variable and the corresponding transformation group are found. Moreover, the integrability of the BKK system in the sense of having a consistent Riccati expansion(CRE) is investigated. The interaction solutions between soliton and cnoidal periodic wave are explicitly studied.展开更多
Jacobi elliptic function expansion method is extended to construct the exact solutions to another kind of KdV equations, which have variable coefficients or forcing terms. And new periodic solutions obtained by this m...Jacobi elliptic function expansion method is extended to construct the exact solutions to another kind of KdV equations, which have variable coefficients or forcing terms. And new periodic solutions obtained by this method can be reduced to the soliton-typed solutions under the limited condition.展开更多
The(2+1)-dimensional Konopelchenko–Dubrovsky equation is an important prototypic model in nonlinear physics, which can be applied to many fields. Various nonlinear excitations of the(2+1)-dimensional Konopelchenko–D...The(2+1)-dimensional Konopelchenko–Dubrovsky equation is an important prototypic model in nonlinear physics, which can be applied to many fields. Various nonlinear excitations of the(2+1)-dimensional Konopelchenko–Dubrovsky equation have been found by many methods. However, it is very difficult to find interaction solutions among different types of nonlinear excitations. In this paper, with the help of the Riccati equation, the(2+1)-dimensional Konopelchenko–Dubrovsky equation is solved by the consistent Riccati expansion(CRE). Furthermore, we obtain the soliton-cnoidal wave interaction solution of the(2+1)-dimensional Konopelchenko–Dubrovsky equation.展开更多
This paper is concerned with the fifth-order modified Korteweg-de Vries(fmKdV) equation. It is proved that the fmKdV equation is consistent Riccati expansion(CRE) solvable. Three special form of soliton-cnoidal wave i...This paper is concerned with the fifth-order modified Korteweg-de Vries(fmKdV) equation. It is proved that the fmKdV equation is consistent Riccati expansion(CRE) solvable. Three special form of soliton-cnoidal wave interaction solutions are discussed analytically and shown graphically. Furthermore, based on the consistent tanh expansion(CTE) method, the nonlocal symmetry related to the consistent tanh expansion(CTE) is investigated, we also give the relationship between this kind of nonlocal symmetry and the residual symmetry which can be obtained with the truncated Painlev′e method. We further study the spectral function symmetry and derive the Lax pair of the fmKdV equation. The residual symmetry can be localized to the Lie point symmetry of an enlarged system and the corresponding finite transformation group is computed.展开更多
文摘A cnoidal wave solution of the two dimensional RLW equation of are obtained by elliptic integral method. and the some estimations the uniqueness and the stability of the periodic solution with both x, y to the Cauchy problem are proved by the priori estimations.
基金Project supported by the Global Change Research Program of China(Grant No.2015CB953904)the National Natural Science Foundation of China(Grant Nos.11275072 and 11435005)+2 种基金the Doctoral Program of Higher Education of China(Grant No.20120076110024)the Network Information Physics Calculation of Basic Research Innovation Research Group of China(Grant No.61321064)the Fund from Shanghai Collaborative Innovation Center of Trustworthy Software for Internet of Things(Grant No.ZF1213)
文摘In this paper,the truncated Painlev′e analysis,nonlocal symmetry,Bcklund transformation of the(2+1)-dimensional modified Bogoyavlenskii–Schiff equation are presented.Then the nonlocal symmetry is localized to the corresponding nonlocal group by the prolonged system.In addition,the(2+1)-dimensional modified Bogoyavlenskii–Schiff is proved consistent Riccati expansion(CRE) solvable.As a result,the soliton–cnoidal wave interaction solutions of the equation are explicitly given,which are difficult to find by other traditional methods.Moreover figures are given out to show the properties of the explicit analytic interaction solutions.
基金Project supported by the Zhejiang Provincial Natural Science Foundation of China(Grant No.LQ13A010014)the National Natural Science Foundation of China(Grant Nos.11326164,11401528,11435005,and 11375090)
文摘For the (2+1)-dimensional Broer–Kaup–Kupershmidt(BKK) system, the nonlocal symmetries related to the Schwarzian variable and the corresponding transformation group are found. Moreover, the integrability of the BKK system in the sense of having a consistent Riccati expansion(CRE) is investigated. The interaction solutions between soliton and cnoidal periodic wave are explicitly studied.
文摘Jacobi elliptic function expansion method is extended to construct the exact solutions to another kind of KdV equations, which have variable coefficients or forcing terms. And new periodic solutions obtained by this method can be reduced to the soliton-typed solutions under the limited condition.
基金Supported by the National Natural Science Foundation of China under Grant Nos.11175092,11275123,11205092,and 10905038Shanghai Knowledge Service Platform for Trustworthy Internet of Things under Grant No.ZF1213+1 种基金Talent FundK.C.Wong Magna Fund in Ningbo University
文摘The(2+1)-dimensional Konopelchenko–Dubrovsky equation is an important prototypic model in nonlinear physics, which can be applied to many fields. Various nonlinear excitations of the(2+1)-dimensional Konopelchenko–Dubrovsky equation have been found by many methods. However, it is very difficult to find interaction solutions among different types of nonlinear excitations. In this paper, with the help of the Riccati equation, the(2+1)-dimensional Konopelchenko–Dubrovsky equation is solved by the consistent Riccati expansion(CRE). Furthermore, we obtain the soliton-cnoidal wave interaction solution of the(2+1)-dimensional Konopelchenko–Dubrovsky equation.
基金Supported by National Natural Science Foundation of China under Grant No.11505090Research Award Foundation for Outstanding Young Scientists of Shandong Province under Grant No.BS2015SF009
文摘This paper is concerned with the fifth-order modified Korteweg-de Vries(fmKdV) equation. It is proved that the fmKdV equation is consistent Riccati expansion(CRE) solvable. Three special form of soliton-cnoidal wave interaction solutions are discussed analytically and shown graphically. Furthermore, based on the consistent tanh expansion(CTE) method, the nonlocal symmetry related to the consistent tanh expansion(CTE) is investigated, we also give the relationship between this kind of nonlocal symmetry and the residual symmetry which can be obtained with the truncated Painlev′e method. We further study the spectral function symmetry and derive the Lax pair of the fmKdV equation. The residual symmetry can be localized to the Lie point symmetry of an enlarged system and the corresponding finite transformation group is computed.