期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
FCM算法中隶属度的新解释及其应用 被引量:35
1
作者 范九伦 吴成茂 《电子学报》 EI CAS CSCD 北大核心 2004年第2期350-352,共3页
本文从几何角度给出模糊c 均值聚类算法中隶属度的解释 ,这种解释能更好的说明模糊c 均值聚类算法的本质 .作为应用 。
关键词 模糊划分 模糊C-均值聚类算法 聚类有效性 包含度
下载PDF
聚类有效性评价新指标 被引量:34
2
作者 谢娟英 周颖 +1 位作者 王明钊 姜炜亮 《智能系统学报》 CSCD 北大核心 2017年第6期873-882,共10页
聚类有效性评价指标分为外部评价指标和内部评价指标两大类。现有外部评价指标没有考虑聚类结果类偏斜现象;现有内部评价指标的聚类有效性检验效果难以得到最佳类簇数。针对现有内外部聚类评价指标的缺陷,提出同时考虑正负类信息的分别... 聚类有效性评价指标分为外部评价指标和内部评价指标两大类。现有外部评价指标没有考虑聚类结果类偏斜现象;现有内部评价指标的聚类有效性检验效果难以得到最佳类簇数。针对现有内外部聚类评价指标的缺陷,提出同时考虑正负类信息的分别基于相依表和样本对的外部评价指标,用于评价任意分布数据集的聚类结果;提出采用方差度量类内紧密度和类间分离度,以类间分离度与类内紧密度之比作为度量指标的内部评价指标。UCI数据集和人工模拟数据集实验测试表明,提出的新内部评价指标能有效发现数据集的真实类簇数;提出的基于相依表和样本对的外部评价指标,可有效评价存在类偏斜与噪音数据的聚类结果。 展开更多
关键词 聚类 聚类有效性 评价指标 外部指标 内部指标 F-measure Adjusted Rand INDEX STDI S2 PS2
下载PDF
基于角点特征和自适应核聚类算法的目标识别 被引量:16
3
作者 王鹏伟 吴秀清 余珊 《计算机工程》 CAS CSCD 北大核心 2007年第6期179-181,184,共4页
提出了基于角点特征和自适应核聚类的目标识别方法,将有效性函数引入核聚类算法中,提出了一种可动态估计聚类数目的自适应核聚类算法。该方法用于飞机识别中,通过对飞机角点特征的自适应核聚类,完成定位识别。实验结果表明,该方法是有... 提出了基于角点特征和自适应核聚类的目标识别方法,将有效性函数引入核聚类算法中,提出了一种可动态估计聚类数目的自适应核聚类算法。该方法用于飞机识别中,通过对飞机角点特征的自适应核聚类,完成定位识别。实验结果表明,该方法是有效的。 展开更多
关键词 角点特征 核聚类 有效性函数 飞机识别
下载PDF
基于模糊聚类的设备分组技术 被引量:8
4
作者 石旭东 付宜利 +1 位作者 代勇 马玉林 《哈尔滨工业大学学报》 EI CAS CSCD 北大核心 2001年第3期287-290,共4页
在动态联盟形成过程中 ,需要对候选企业的设备空间进行搜索 ,当设备数量较大时 ,设备搜索时间较长 ,求解时间增加 ,计算复杂度加大 .因此 ,采用设备分组方法 ,设备分组是减少设备搜索空间和时间的一个有效途径 .介绍了一种具有新的聚类... 在动态联盟形成过程中 ,需要对候选企业的设备空间进行搜索 ,当设备数量较大时 ,设备搜索时间较长 ,求解时间增加 ,计算复杂度加大 .因此 ,采用设备分组方法 ,设备分组是减少设备搜索空间和时间的一个有效途径 .介绍了一种具有新的聚类有效性测度的扩展模糊C -均值聚类算法 (EFCM) ,根据设备所具有的工艺元素进行分组 ,形成功能加工单元 .EFCM算法具有新的聚类有效性测度 ,使同组设备具有最大紧密度 ,异组设备具有最大排斥度 ,分组更加合理 ,增强了模糊聚类算法的实用性 .具体实例验证了EFCM算法的实用性和有效性 . 展开更多
关键词 模糊聚类 聚类有效性测度 设备分组技术
下载PDF
Evolutionary Multi-Tasking Optimization for High-Efficiency Time Series Data Clustering
5
作者 Rui Wang Wenhua Li +2 位作者 Kaili Shen Tao Zhang Xiangke Liao 《Tsinghua Science and Technology》 SCIE EI CAS CSCD 2024年第2期343-355,共13页
Time series clustering is a challenging problem due to the large-volume,high-dimensional,and warping characteristics of time series data.Traditional clustering methods often use a single criterion or distance measure,... Time series clustering is a challenging problem due to the large-volume,high-dimensional,and warping characteristics of time series data.Traditional clustering methods often use a single criterion or distance measure,which may not capture all the features of the data.This paper proposes a novel method for time series clustering based on evolutionary multi-tasking optimization,termed i-MFEA,which uses an improved multifactorial evolutionary algorithm to optimize multiple clustering tasks simultaneously,each with a different validity index or distance measure.Therefore,i-MFEA can produce diverse and robust clustering solutions that satisfy various preferences of decision-makers.Experiments on two artificial datasets show that i-MFEA outperforms single-objective evolutionary algorithms and traditional clustering methods in terms of convergence speed and clustering quality.The paper also discusses how i-MFEA can address two long-standing issues in time series clustering:the choice of appropriate similarity measure and the number of clusters. 展开更多
关键词 time series clustering evolutionary multi-tasking multifactorial optimization clustering validity index distance measure
原文传递
An Efficient Agglomerative Clustering Algorithm for Web Navigation Pattern Identification
6
作者 A. Anitha 《Circuits and Systems》 2016年第9期2349-2356,共9页
Web log mining is analysis of web log files with web page sequences. Discovering user access patterns from web access are necessary for building adaptive web servers, to improve e-commerce, to carry out cross-marketin... Web log mining is analysis of web log files with web page sequences. Discovering user access patterns from web access are necessary for building adaptive web servers, to improve e-commerce, to carry out cross-marketing, for web personalization, to predict web access sequence etc. In this paper, a new agglomerative clustering technique is proposed to identify users with similar interest, and to determine the motivation for visiting a website. Using this approach, web usage mining is done through different stages namely data cleaning, preprocessing, pattern discovery and pattern analysis. Results are given to explain how this approach produces tight usage clusters than the existing web usage mining techniques. Rather than traditional distance based clustering, the similarity measure is considered during clustering process in order to reduce computational complexity. This paper also deals with the problem of assessing the quality of user session clusters and cluster validity is measured by using statistical test, which measures the distances of clusters distributions to infer their dissimilarity and distinguish level. Using such statistical measures, it is proved that cluster accuracy is improved to the extent of 0.83, over existing k-means clustering with validity measure 0.26, FCM (Fuzzy C Means) clustering with validity measure 0.56. Rough set based clustering with validity measure 0.54 Generation of dense clusters is essential for finding interesting patterns needed for further mining and analysis. 展开更多
关键词 Agglomerative clustering Similarity measure Cluster validity Clickstream Sequence TRANSACTION
下载PDF
A new cluster validity index using maximum cluster spread based compactness measure
7
作者 M.Arif Wani Romana Riyaz 《International Journal of Intelligent Computing and Cybernetics》 EI 2016年第2期179-204,共26页
Purpose-The most commonly used approaches for cluster validation are based on indices but the majority of the existing cluster validity indices do not work well on data sets of different complexities.The purpose of th... Purpose-The most commonly used approaches for cluster validation are based on indices but the majority of the existing cluster validity indices do not work well on data sets of different complexities.The purpose of this paper is to propose a new cluster validity index(ARSD index)that works well on all types of data sets.Design/methodology/approach-The authors introduce a new compactness measure that depicts the typical behaviour of a cluster where more points are located around the centre and lesser points towards the outer edge of the cluster.A novel penalty function is proposed for determining the distinctness measure of clusters.Random linear search-algorithm is employed to evaluate and compare the performance of the five commonly known validity indices and the proposed validity index.The values of the six indices are computed for all nc ranging from(nc_(min),nc_(max))to obtain the optimal number of clusters present in a data set.The data sets used in the experiments include shaped,Gaussian-like and real data sets.Findings-Through extensive experimental study,it is observed that the proposed validity index is found to be more consistent and reliable in indicating the correct number of clusters compared to other validity indices.This is experimentally demonstrated on 11 data sets where the proposed index has achieved better results.Originality/value-The originality of the research paper includes proposing a novel cluster validity index which is used to determine the optimal number of clusters present in data sets of different complexities. 展开更多
关键词 clustering Cluster analysis Cluster validity Compactness measure Optimal number Distinctness measure
原文传递
基于多示例的K-means聚类学习算法 被引量:6
8
作者 谢红薇 李晓亮 《计算机工程》 CAS CSCD 北大核心 2009年第22期179-181,共3页
多示例学习是继监督学习、非监督学习、强化学习后的又一机器学习框架。将多示例学习和非监督学习结合起来,在传统非监督聚类算法K-means的基础上提出MI_K-means算法,该算法利用混合Hausdorff距离作为相似测度来实现数据聚类。实验表明... 多示例学习是继监督学习、非监督学习、强化学习后的又一机器学习框架。将多示例学习和非监督学习结合起来,在传统非监督聚类算法K-means的基础上提出MI_K-means算法,该算法利用混合Hausdorff距离作为相似测度来实现数据聚类。实验表明,该方法能够有效揭示多示例数据集的内在结构,与K-means算法相比具有更好的聚类效果。 展开更多
关键词 多示例学习 K-MEANS聚类 包间距 聚类有效性评价
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部