Research on brain function after brachial plexus injury focuses on local cortical functional reorganization,and few studies have focused on brain networks after brachial plexus injury.Changes in brain networks may hel...Research on brain function after brachial plexus injury focuses on local cortical functional reorganization,and few studies have focused on brain networks after brachial plexus injury.Changes in brain networks may help understanding of brain plasticity at the global level.We hypothesized that topology of the global cerebral resting-state functional network changes after unilateral brachial plexus injury.Thus,in this cross-sectional study,we recruited eight male patients with unilateral brachial plexus injury(right handedness,mean age of 27.9±5.4years old)and eight male healthy controls(right handedness,mean age of 28.6±3.2).After acquiring and preprocessing resting-state magnetic resonance imaging data,the cerebrum was divided into 90 regions and Pearson’s correlation coefficient calculated between regions.These correlation matrices were then converted into a binary matrix with affixed sparsity values of 0.1–0.46.Under sparsity conditions,both groups satisfied this small-world property.The clustering coefficient was markedly lower,while average shortest path remarkably higher in patients compared with healthy controls.These findings confirm that cerebral functional networks in patients still show smallworld characteristics,which are highly effective in information transmission in the brain,as well as normal controls.Alternatively,varied small-worldness suggests that capacity of information transmission and integration in different brain regions in brachial plexus injury patients is damaged.展开更多
Semantic-based searching in peer-to-peer (P2P) networks has drawn significant attention recently. A number of semantic searching schemes, such as GES proposed by Zhu Y et al., employ search models in Information Ret...Semantic-based searching in peer-to-peer (P2P) networks has drawn significant attention recently. A number of semantic searching schemes, such as GES proposed by Zhu Y et al., employ search models in Information Retrieval (IR). All these IR-based schemes use one vector to summarize semantic contents of all documents on a single node. For example, GES derives a node vector based on the IR model: VSM (Vector Space Model). A topology adaptation algorithm and a search protocol are then designed according to the similarity between node vectors of different nodes. Although the single semantic vector is suitable when the distribution of documents in each node is uniform, it may not be efficient when the distribution is diverse. When there are many categories of documents at each node, the node vector representation may be inaccurate. We extend the idea of GES and present a new class-based semantic searching scheme (CSS) specifically designed for unstructured P2P networks with heterogeneous single-node document collection. It makes use of a state-of-the-art data clustering algorithm, online spherical k-means clustering (OSKM), to cluster all documents on a node into several classes. Each class can be viewed as a virtual node. Virtual nodes are connected through virtual links. As a result, the class vector replaces the node vector and plays an important role in the class-based topology adaptation and search process. This makes CSS very efficient. Our simulation using the IR benchmark TREC collection demonstrates that CSS outperforms GES in terms of higher recall, higher precision, and lower search cost.展开更多
基金supported by National Natural Science Foundation of China(61304256)Zhejiang Provincial Natural Science Foundation of China(LQ13F030013)+4 种基金Project of the Education Department of Zhejiang Province(Y201327006)Young Researchers Foundation of Zhejiang Provincial Top Key Academic Discipline of Mechanical Engineering and Zhejiang Sci-Tech University Key Laboratory(ZSTUME01B15)New Century 151 Talent Project of Zhejiang Province521 Talent Project of Zhejiang Sci-Tech UniversityYoung and Middle-aged Talents Foundation of Zhejiang Provincial Top Key Academic Discipline of Mechanical Engineering
文摘Research on brain function after brachial plexus injury focuses on local cortical functional reorganization,and few studies have focused on brain networks after brachial plexus injury.Changes in brain networks may help understanding of brain plasticity at the global level.We hypothesized that topology of the global cerebral resting-state functional network changes after unilateral brachial plexus injury.Thus,in this cross-sectional study,we recruited eight male patients with unilateral brachial plexus injury(right handedness,mean age of 27.9±5.4years old)and eight male healthy controls(right handedness,mean age of 28.6±3.2).After acquiring and preprocessing resting-state magnetic resonance imaging data,the cerebrum was divided into 90 regions and Pearson’s correlation coefficient calculated between regions.These correlation matrices were then converted into a binary matrix with affixed sparsity values of 0.1–0.46.Under sparsity conditions,both groups satisfied this small-world property.The clustering coefficient was markedly lower,while average shortest path remarkably higher in patients compared with healthy controls.These findings confirm that cerebral functional networks in patients still show smallworld characteristics,which are highly effective in information transmission in the brain,as well as normal controls.Alternatively,varied small-worldness suggests that capacity of information transmission and integration in different brain regions in brachial plexus injury patients is damaged.
基金supported in part by the National Science Foundation of USA under Grant Nos.ANI 0073736,EIA 0130806,CCR0329741,CNS 0422762,CNS 0434533,CNS 0531410,CNS 0626240,CCF 0830289,and CNS 0948184
文摘Semantic-based searching in peer-to-peer (P2P) networks has drawn significant attention recently. A number of semantic searching schemes, such as GES proposed by Zhu Y et al., employ search models in Information Retrieval (IR). All these IR-based schemes use one vector to summarize semantic contents of all documents on a single node. For example, GES derives a node vector based on the IR model: VSM (Vector Space Model). A topology adaptation algorithm and a search protocol are then designed according to the similarity between node vectors of different nodes. Although the single semantic vector is suitable when the distribution of documents in each node is uniform, it may not be efficient when the distribution is diverse. When there are many categories of documents at each node, the node vector representation may be inaccurate. We extend the idea of GES and present a new class-based semantic searching scheme (CSS) specifically designed for unstructured P2P networks with heterogeneous single-node document collection. It makes use of a state-of-the-art data clustering algorithm, online spherical k-means clustering (OSKM), to cluster all documents on a node into several classes. Each class can be viewed as a virtual node. Virtual nodes are connected through virtual links. As a result, the class vector replaces the node vector and plays an important role in the class-based topology adaptation and search process. This makes CSS very efficient. Our simulation using the IR benchmark TREC collection demonstrates that CSS outperforms GES in terms of higher recall, higher precision, and lower search cost.