期刊文献+
共找到219篇文章
< 1 2 11 >
每页显示 20 50 100
结合FCMS与变分水平集的图像分割模型 被引量:26
1
作者 唐利明 田学全 +1 位作者 黄大荣 王晓峰 《自动化学报》 EI CSCD 北大核心 2014年第6期1233-1248,共16页
提出了一个结合融合空间约束的模糊C均值(Fuzzy C means with spatial constraints,FCMS)聚类与变分水平集的图像模糊聚类分割模型.在该模型中引入了一个基于图像局部信息和空间信息的外部模糊聚类能量,从而可以获取精确的局部图像的空... 提出了一个结合融合空间约束的模糊C均值(Fuzzy C means with spatial constraints,FCMS)聚类与变分水平集的图像模糊聚类分割模型.在该模型中引入了一个基于图像局部信息和空间信息的外部模糊聚类能量,从而可以获取精确的局部图像的空间特征,使得本文模型对噪声图像的聚类分割具有较强的鲁棒性.采用不同类型的实验图像,将本文模型与10个不同类型的图像分割模型进行了对比实验,实验结果显示本文模型能克服图像中噪声影响并取得较满意的聚类分割结果. 展开更多
关键词 变分水平集 图像聚类 图像分割 FCMS聚类 隶属度 聚类中心
下载PDF
一种基于密度的K-均值算法 被引量:15
2
作者 刘艳丽 刘希云 《计算机工程与应用》 CSCD 北大核心 2007年第32期153-155,共3页
针对传统的K-均值算法聚类时所面临的维数灾难、初始聚类中心点难以确定的缺点,提出一种改进的K-均值算法,其核心思想是通过降维、基于密度及散布的初始中心点搜索等方法改进K-均值算法。实验结果证明改进后的算法无论在聚类精度还是在... 针对传统的K-均值算法聚类时所面临的维数灾难、初始聚类中心点难以确定的缺点,提出一种改进的K-均值算法,其核心思想是通过降维、基于密度及散布的初始中心点搜索等方法改进K-均值算法。实验结果证明改进后的算法无论在聚类精度还是在稳定性方面,都明显优于标准的K-均值算法。 展开更多
关键词 K-均值算法 密度 聚类中心
下载PDF
基于密度的模糊代表点聚类算法 被引量:11
3
作者 周洁 姜志彬 +1 位作者 张远鹏 王士同 《控制与决策》 EI CSCD 北大核心 2020年第5期1123-1133,共11页
结合密度聚类和模糊聚类的特点,提出一种基于密度的模糊代表点聚类算法.首先利用密度对数据点成为候选聚类中心点的可能性进行处理,密度越高的点成为聚类中心点的可能性越大;然后利用模糊方法对聚类中心点进行确定;最后通过合并聚类中... 结合密度聚类和模糊聚类的特点,提出一种基于密度的模糊代表点聚类算法.首先利用密度对数据点成为候选聚类中心点的可能性进行处理,密度越高的点成为聚类中心点的可能性越大;然后利用模糊方法对聚类中心点进行确定;最后通过合并聚类中心点确定最终的聚类中心.所提出算法具有很好的自适应性,能够处理不同形状的聚类问题,无需提前规定聚类个数,能够自动确定真实存在的聚类中心点,可解释性好.通过结合不同聚类方法的优点,最终实现对数据的有效划分.此外,所提出的算法对于聚类数和初始化、处理不同形状的聚类问题以及应对异常值等方面具有较好的鲁棒性.通过在人工数据集和UCI真实数据集上进行实验,表明所提出算法具有较好的聚类性能和广泛的适用性. 展开更多
关键词 聚类 密度聚类 模糊聚类 代表点聚类 聚类中心 鲁棒性
原文传递
基于图的K-均值聚类法中初始聚类中心选择 被引量:11
4
作者 周海岩 白晓林 《计算机测量与控制》 CSCD 北大核心 2010年第9期2167-2169,共3页
聚类分析在信息检索和数据挖掘等领域都有很广泛的应用,K均值聚类算法是一个比较简洁和快速的聚类算法,但是它存在着初始类簇中心须事先设定,而初始类簇中心的选择严重影响聚类的结果;为了改善K均值聚类算法的聚类效果,针对以往K均值聚... 聚类分析在信息检索和数据挖掘等领域都有很广泛的应用,K均值聚类算法是一个比较简洁和快速的聚类算法,但是它存在着初始类簇中心须事先设定,而初始类簇中心的选择严重影响聚类的结果;为了改善K均值聚类算法的聚类效果,针对以往K均值聚类算法中采用随机指定初始类簇中心的方法,提出了一种基于图论的连通分支来进行初始类簇中心的选取算法,并用随机样本发生器生成的模拟数据进行测试,通过与常规的随机选取方法的比较,该算法具有更好的性能和健壮性。 展开更多
关键词 数据聚类 簇类 无向图 连通分支
下载PDF
基于人工蜂群优化的K均值聚类算法 被引量:7
5
作者 廖伍代 朱范炳 +1 位作者 王海泉 孙雪凯 《计算机测量与控制》 2018年第4期136-138,156,共4页
为了改善K均值聚类算法对初始聚类中心敏感和易于陷入局部最优的不足,提出人工蜂群算法和K均值聚类算法相结合的想法,即基于人工蜂群优化的K均值聚类算法;通过全局寻优能力强的人工蜂群算法初始化K均值的聚类中心并优化聚类中心的位置,... 为了改善K均值聚类算法对初始聚类中心敏感和易于陷入局部最优的不足,提出人工蜂群算法和K均值聚类算法相结合的想法,即基于人工蜂群优化的K均值聚类算法;通过全局寻优能力强的人工蜂群算法初始化K均值的聚类中心并优化聚类中心的位置,从而帮助K均值跳出局部极值,优化聚类效果;将混合聚类算法用Iris、Red Wine和New Red Wine数据集做聚类测试,结果表明该算法既克服了原始K均值聚类算法容易受初始聚类中心影响和不稳定的缺点,又具有良好的性能和聚类效果。 展开更多
关键词 聚类分析 K均值算法 人工蜂群算法 聚类中心 优化
下载PDF
一种用于彩色图像分割的GA-K-Means方法 被引量:7
6
作者 李勇 赵杰 《科学技术与工程》 北大核心 2020年第32期13309-13316,共8页
典型K均值聚类算法的聚类中心个数和聚类中心的选取对彩色图像分割的精度影响较大,其主要体现在彩色图像的特征相似度(feature similarity of color,FSIMC)不高。提出一种基于遗传算法的K均值聚类分割法(GA-K-Means)。每条染色体的基因... 典型K均值聚类算法的聚类中心个数和聚类中心的选取对彩色图像分割的精度影响较大,其主要体现在彩色图像的特征相似度(feature similarity of color,FSIMC)不高。提出一种基于遗传算法的K均值聚类分割法(GA-K-Means)。每条染色体的基因由聚类中心数目和聚类中心点两部分组成,并且将彩色图像的FSIMC作为适应度函数值。首先将彩色图像转换到Lab颜色空间,然后以步进和遗传算子相结合的方式搜索最佳聚类中心个数和聚类中心进行分割。把18幅不同类型的图像分别按照K均值聚类法、GA-K-Means分割法、模糊C均值聚类(fuzzy C-means clustering,FCM)分割法进行实验。结果表明,采用GA-K-Means分割的18幅图像,其FSIMC值相应的比另外2种分割法得到的FSIMC值高10%左右,其分割时间比另外2种分割法略长。 展开更多
关键词 聚类中心个数 聚类中心 彩色图像分割 特征相似度 遗传算子 Lab颜色空间
下载PDF
峰值检测FCM算法的医学图像分割 被引量:6
7
作者 唐文静 许兆新 张小峰 《智能系统学报》 CSCD 北大核心 2014年第5期584-589,共6页
为了更好地平衡传统FCM及其相关改进算法的分割效果与分割效率问题,提出了一种基于峰值检测的快速FCM图像分割算法。首先基于峰值检测策略对聚类中心进行初始化;然后在初始化聚类中心的基础上对医学图像进行分割。其本质是运用峰值检测... 为了更好地平衡传统FCM及其相关改进算法的分割效果与分割效率问题,提出了一种基于峰值检测的快速FCM图像分割算法。首先基于峰值检测策略对聚类中心进行初始化;然后在初始化聚类中心的基础上对医学图像进行分割。其本质是运用峰值检测技术指导聚类中心的初始化,以使初始化的聚类中心尽可能靠近最终的聚类中心,从而以提高算法的工作效率。在医学图像上进行的实验表明,算法可以有效地提高图像分割的效率,并能得到很好的分割效果。 展开更多
关键词 FCM FCMs EnFCM 图像分割 医学图像 峰值检测 聚类中心 直方图
下载PDF
基于改进密度峰值算法的轨迹聚类
8
作者 钟超 刘漫丹 贺帆 《计算机工程与设计》 北大核心 2024年第1期130-138,共9页
为解决用户群体移动轨迹划分和密度峰值聚类算法自身局限性的问题,以校园轨迹为对象,考虑时间和位置语义信息层面的信息,建立网络用户间的相似性度量模型,提出一种基于共享近邻贡献度的密度峰值聚类算法(density peak clustering based ... 为解决用户群体移动轨迹划分和密度峰值聚类算法自身局限性的问题,以校园轨迹为对象,考虑时间和位置语义信息层面的信息,建立网络用户间的相似性度量模型,提出一种基于共享近邻贡献度的密度峰值聚类算法(density peak clustering based on shared nearest neighbor contribution,SNNC-DPC),结合信息熵理论,通过最小化局部密度熵自适应选择截断距离;在局部密度计算上,利用共享近邻贡献度重新计算局部密度,更加全面地反映数据分布的特性;采用非线性变换方法选取决策值,解决聚类中心选取困难且方法单一的问题。在真实校园轨迹数据集上实验,验证了改进算法的有效性。 展开更多
关键词 无线网络 密度峰值聚类 语义信息 相似性度量 信息熵 聚类中心 共享近邻贡献度
下载PDF
基于最小距离乘积K-means算法的改进 被引量:4
9
作者 贺嘉楠 高云龙 +2 位作者 王宏杰 朱琪 董立岩 《吉林大学学报(信息科学版)》 CAS 2015年第5期564-569,共6页
针对传统K-means算法因初始聚类中心的随机性而导致聚类结果产生很大的波动性问题,提出一种基于最小距离乘积聚类算法CAMDP(Clustering Algorithm based on Min-Distance Product),利用数次抽样技术,在得到的聚类中心集合上继续使用最... 针对传统K-means算法因初始聚类中心的随机性而导致聚类结果产生很大的波动性问题,提出一种基于最小距离乘积聚类算法CAMDP(Clustering Algorithm based on Min-Distance Product),利用数次抽样技术,在得到的聚类中心集合上继续使用最小乘积法寻找最佳的初始聚类中心,较大程度减少了K-means聚类算法对初值选取的随机性。实验结果表明:改进后的K-means算法既考虑了网络结构的拓扑信息,又考虑了节点的属性特征,为社区划分提供了有力的决策支持。 展开更多
关键词 社区结构 聚类 社会关系 聚类中心
下载PDF
基于改进K-means算法的大跨屋盖结构表面风荷载分区研究
10
作者 李玉学 杨君保 +1 位作者 陈铁 田玉基 《防灾减灾工程学报》 CSCD 北大核心 2024年第5期1106-1114,共9页
针对K-means算法进行大跨屋盖结构表面风荷载分区中存在的分类数k值需凭经验事先给定以及所有初始聚类中心均需随机选取带来的分类情况数过多、从中寻找最优分类结果工作量大且效率低的问题,提出基于改进K-means算法的大跨屋盖结构表面... 针对K-means算法进行大跨屋盖结构表面风荷载分区中存在的分类数k值需凭经验事先给定以及所有初始聚类中心均需随机选取带来的分类情况数过多、从中寻找最优分类结果工作量大且效率低的问题,提出基于改进K-means算法的大跨屋盖结构表面风荷载分区方法。首先,建立分类数k与其相应测点风荷载的误差平方和(Sum of the Squared Errors:SSE)关系曲线,引入手肘法基本思想,实现最优分类数kst值的精准识别;其次,在首个初始聚类中心随机选取基础上,引入轮盘法基本思想,完成对剩余初始聚类中心的高效选取;然后,根据类内紧凑、类间分散的原则,通过类内紧凑性判定指标S(k)和类间分散性判定指标D(k),构造并借助SD(k)值有效性检验,得到最优的风荷载分区结果;最后,以北京奥林匹克网球中心大跨悬挑屋盖结构为例,针对风洞试验所得风荷载测试结果,采用所提方法对其表面最不利风压系数进行分区计算,并与传统K-means算法进行对比,结果表明,所提方法能够高效实现大跨屋盖结构表面风压分区计算,具有较好的工程应用价值。 展开更多
关键词 大跨屋盖结构 风荷载分区 K-MEANS算法 分类数 聚类中心
下载PDF
自适应K-means图像分割方法 被引量:4
11
作者 王嘉栋 李寒松 《导航定位与授时》 2016年第5期66-69,共4页
本文提出了一种自适应K-means图像分割方法,该方法通过用Otsu方法来初步选取阈值作为初始K-means聚类中心,然后经过K-means聚类方法对图像进行分割,最后根据K-means获得的聚类中心与Otsu所确定的阈值进行平均计算,作为图像分割的阈值。... 本文提出了一种自适应K-means图像分割方法,该方法通过用Otsu方法来初步选取阈值作为初始K-means聚类中心,然后经过K-means聚类方法对图像进行分割,最后根据K-means获得的聚类中心与Otsu所确定的阈值进行平均计算,作为图像分割的阈值。实验结果表明:该方法自动快速形成的分割阈值较为合理,对图像能达到更好的分割效果,可以进一步提高后续图像匹配与定位的准确性。 展开更多
关键词 自适应K-means 图像分割 聚类中心 OTSU
下载PDF
一种快速确定聚类中心的光谱聚类方法 被引量:3
12
作者 周永祥 杨海峰 +1 位作者 蔡江辉 尚晓群 《太原科技大学学报》 2020年第6期425-432,共8页
恒星光谱分类是天文数据处理的重要环节,由于天文望远镜的改进与发展,人类已获取海量的光谱数据,在如此大的数据量下,光谱的快速分类识别显得尤为重要。聚类技术是实现目标分类的常用方法之一,而聚类中心点的选择是影响聚类精度和效率... 恒星光谱分类是天文数据处理的重要环节,由于天文望远镜的改进与发展,人类已获取海量的光谱数据,在如此大的数据量下,光谱的快速分类识别显得尤为重要。聚类技术是实现目标分类的常用方法之一,而聚类中心点的选择是影响聚类精度和效率的重要因素,基于此提出一种快速确定聚类中心的光谱聚类方法(Fast Determination of Clustering Center)(FDCC).首先预处理提取出给定发射线的置信度信息,将其作为聚类方法的数据,从而实现对光谱数据的降维;计算所有数据的密度和距离,将密度和距离组合成评判值,利用聚类中心的密度高且相互距离远的特点从评判值中找出奇异点;最后利用真正中心点的密度和距离不应相差过大的特点从奇异点中得到聚类中心,再根据聚类中心使用K近邻得到所有的簇。该研究使用LAMOST DR5的光谱数据进行了聚类测试,实验结果表明本文提出的快速确定聚类中心的光谱聚类方法(FDCC)能够有效地减少运行时间,并且较于其他的算法,具有更好的聚类结果。 展开更多
关键词 聚类 恒星 聚类中心 预处理
下载PDF
分类矩阵对象数据的BC-k-modes聚类算法 被引量:1
13
作者 李顺勇 余曼 王改变 《河南科学》 2020年第10期1549-1557,共9页
为了对含有多个特征向量的分类矩阵对象数据进行描述,提出了一种新的基于簇间信息的分类矩阵对象数据的聚类算法(between-cluster k-modes,简称BC-k-modes).该算法利用k-modes算法的聚类过程,对分类矩阵对象数据进行聚类,导出隶属度矩... 为了对含有多个特征向量的分类矩阵对象数据进行描述,提出了一种新的基于簇间信息的分类矩阵对象数据的聚类算法(between-cluster k-modes,简称BC-k-modes).该算法利用k-modes算法的聚类过程,对分类矩阵对象数据进行聚类,导出隶属度矩阵与聚类原型的更新公式,通过增加簇间信息对目标函数寻求局部最优解.最后在五个真实数据集上进行了实验,结果表明该算法对真实数据的聚类效果明显优于其他算法. 展开更多
关键词 簇间信息 分类矩阵对象数据 隶属度矩阵 聚类中心 聚类算法
下载PDF
DMGA-FCM:衍生多种群遗传进化的FCM自适应聚类算法
14
作者 冯志豪 曹金鑫 +3 位作者 黄嘉爽 鞠恒荣 程纯 丁卫平 《小型微型计算机系统》 CSCD 北大核心 2023年第10期2196-2203,共8页
模糊C均值聚类(Fuzzy C-means Clustering,FCM)算法是分析医学数据的重要方法之一,FCM的聚类效果容易受初始聚类中心的影响;诸多研究人员往往采用多种群遗传算法(Multiple Population Genetic Algorithm,MPGA)解决上述问题,但MPGA的全... 模糊C均值聚类(Fuzzy C-means Clustering,FCM)算法是分析医学数据的重要方法之一,FCM的聚类效果容易受初始聚类中心的影响;诸多研究人员往往采用多种群遗传算法(Multiple Population Genetic Algorithm,MPGA)解决上述问题,但MPGA的全局搜索能力不足并缺少自适应性、易过早收敛、初始聚类中心不佳.为此,本文提出一种DMGA-FCM:衍生多种群遗传进化(DMGA)的FCM自适应聚类算法.在DMGA-FCM中,本文首次提出的衍生算子,对初始化种群进行衍生操作,提升算法寻优能力,处理种群间寻优能力不足;利用模糊控制动态调节遗传概率,以提升算法自适应性,进而增强DMGA算法全局寻优能力,避免过早收敛;用DMGA优化FCM算法的初始聚类中心,以提升算法聚类效果.在仿真实验中,本文将该算法与其他相关FCM算法进行对比,可得到更优的医疗数据聚类效果和图像聚类分割效果. 展开更多
关键词 模糊C均值聚类 多种群遗传算法 衍生算子 模糊控制 聚类中心
下载PDF
过程报警事件分组的Petri-FCM方法
15
作者 高丽霄 李宏光 《计算机工程与设计》 CSCD 北大核心 2013年第3期1018-1022,共5页
过程报警事件分组是智能报警管理中的一项核心内容,为了提高过程报警管理的质量,提出了一种过程报警事件分组的Petri-FCM方法。利用先验知识和历史数据建立过程对象报警事件演变的Petri网模型,根据此Petri网模型确立过程报警事件分组聚... 过程报警事件分组是智能报警管理中的一项核心内容,为了提高过程报警管理的质量,提出了一种过程报警事件分组的Petri-FCM方法。利用先验知识和历史数据建立过程对象报警事件演变的Petri网模型,根据此Petri网模型确立过程报警事件分组聚类中心并对数据进行同步处理,采用模糊C均值聚类的方法对过程报警事件进行分组。将该方法应用于TE过程,得到了满意的分组结果,表明了其有效性。 展开更多
关键词 过程报警事件分组 PETRI网 模糊C均值聚类 TE过程 聚类中心
下载PDF
基于人工免疫系统与RBF的混合算法实现模式分类
16
作者 谢铮桂 王会林 《韩山师范学院学报》 2007年第6期37-40,共4页
提出了一种基于人工免疫系统与RBF的混合算法.该算法由两个阶段组成:第一阶段采用人工免疫机制来确定RBF网络隐层的聚类中心的位置和数量。第二阶段求输出层的权值W,最后用模式分类作试验,实验结果表明,该算法具有收敛速度快,泛化能力... 提出了一种基于人工免疫系统与RBF的混合算法.该算法由两个阶段组成:第一阶段采用人工免疫机制来确定RBF网络隐层的聚类中心的位置和数量。第二阶段求输出层的权值W,最后用模式分类作试验,实验结果表明,该算法具有收敛速度快,泛化能力强的特点。 展开更多
关键词 人工免疫系统 聚类中心 RBF 模式分类
下载PDF
基于改进混合蛙跳算法的软测量建模方法
17
作者 张孙力 杨慧中 《南京理工大学学报》 EI CAS CSCD 北大核心 2017年第2期173-180,共8页
针对混合蛙跳算法的寻优机制在寻优过程中易陷入局部最优和收敛效果不理想的问题,该文提出一种改进的混合蛙跳算法。该算法在更新群中最差个体时同步更新最优个体。更新最差个体步长时引入上一次的移动步长并赋予动态权值。改进算法舍... 针对混合蛙跳算法的寻优机制在寻优过程中易陷入局部最优和收敛效果不理想的问题,该文提出一种改进的混合蛙跳算法。该算法在更新群中最差个体时同步更新最优个体。更新最差个体步长时引入上一次的移动步长并赋予动态权值。改进算法舍弃了原算法中用随机值代替最差值的做法,引入高斯变异算子对最差个体进行高斯变异,使种群进化更趋合理。将改进的混合蛙跳算法运用到模糊C均值聚类算法的聚类中心优化中,得到最优的聚类中心。利用该聚类中心对样本进行模糊C均值聚类,并用高斯过程回归对各类样本子集分别建立对应的子模型,通过加权得到系统输出。以双酚A生产过程结晶单元为例进行仿真,对装置出口处的苯酚浓度进行软测量建模,获得了较好的实验结果。 展开更多
关键词 混合蛙跳算法 动态权值 高斯变异算子 聚类中心
下载PDF
K-means算法研究综述 被引量:166
18
作者 吴夙慧 成颖 +1 位作者 郑彦宁 潘云涛 《现代图书情报技术》 CSSCI 北大核心 2011年第5期28-35,共8页
对聚类分析中的基本算法K-means算法中的K值确定、初始聚类中心选择以及分类属性数据处理等主要问题进行综述,理清K-means算法的整个发展脉络及算法研究中的热点和难点,提出改进K-means聚类算法的思路。
关键词 K—means算法 聚类算法 K值 初始聚类中心
原文传递
新的K-均值算法最佳聚类数确定方法 被引量:91
19
作者 周世兵 徐振源 唐旭清 《计算机工程与应用》 CSCD 北大核心 2010年第16期27-31,共5页
K-均值聚类算法是以确定的类数k和随机选定的初始聚类中心为前提对数据集进行聚类的。通常聚类数k事先无法确定,随机选定的初始聚类中心容易使聚类结果不稳定。提出了一种新的确定K-均值聚类算法的最佳聚类数方法,通过设定AP算法的参数,... K-均值聚类算法是以确定的类数k和随机选定的初始聚类中心为前提对数据集进行聚类的。通常聚类数k事先无法确定,随机选定的初始聚类中心容易使聚类结果不稳定。提出了一种新的确定K-均值聚类算法的最佳聚类数方法,通过设定AP算法的参数,将AP算法产生的聚类数作为聚类数搜索范围的上界kmax,并通过选择合适的有效性指标Silhouette指标,以及基于最大最小距离算法思想设定初始聚类中心,分析聚类效果,确定最佳聚类数。仿真实验和分析验证了以上算法方案的可行性。 展开更多
关键词 K-均值聚类 聚类数 聚类有效性指标 初始聚类中心
下载PDF
最小方差优化初始聚类中心的K-means算法 被引量:87
20
作者 谢娟英 王艳娥 《计算机工程》 CAS CSCD 2014年第8期205-211,223,共8页
传统K-means算法随机选取初始聚类中心,容易导致聚类结果不稳定,而优化初始聚类中心的K-means算法需要一定的参数选择,也会使聚类结果缺乏客观性。为此,根据样本空间分布紧密度信息,提出利用最小方差优化初始聚类中心的K-means算法。该... 传统K-means算法随机选取初始聚类中心,容易导致聚类结果不稳定,而优化初始聚类中心的K-means算法需要一定的参数选择,也会使聚类结果缺乏客观性。为此,根据样本空间分布紧密度信息,提出利用最小方差优化初始聚类中心的K-means算法。该算法运用样本空间分布信息,通过计算样本空间分布的方差得到样本紧密度信息,选择方差最小(即紧密度最高)且相距一定距离的样本作为初始聚类中心,实现优化的K-means聚类。在UCI机器学习数据库数据集和含有噪音的人工模拟数据集上的实验结果表明,该算法不仅能得到较好的聚类结果,且聚类结果稳定,对噪音具有较强的免疫性能。 展开更多
关键词 聚类 K-MEANS算法 方差 紧密度 初始聚类中心
下载PDF
上一页 1 2 11 下一页 到第
使用帮助 返回顶部