提出了一个结合融合空间约束的模糊C均值(Fuzzy C means with spatial constraints,FCMS)聚类与变分水平集的图像模糊聚类分割模型.在该模型中引入了一个基于图像局部信息和空间信息的外部模糊聚类能量,从而可以获取精确的局部图像的空...提出了一个结合融合空间约束的模糊C均值(Fuzzy C means with spatial constraints,FCMS)聚类与变分水平集的图像模糊聚类分割模型.在该模型中引入了一个基于图像局部信息和空间信息的外部模糊聚类能量,从而可以获取精确的局部图像的空间特征,使得本文模型对噪声图像的聚类分割具有较强的鲁棒性.采用不同类型的实验图像,将本文模型与10个不同类型的图像分割模型进行了对比实验,实验结果显示本文模型能克服图像中噪声影响并取得较满意的聚类分割结果.展开更多
为了改善K均值聚类算法对初始聚类中心敏感和易于陷入局部最优的不足,提出人工蜂群算法和K均值聚类算法相结合的想法,即基于人工蜂群优化的K均值聚类算法;通过全局寻优能力强的人工蜂群算法初始化K均值的聚类中心并优化聚类中心的位置,...为了改善K均值聚类算法对初始聚类中心敏感和易于陷入局部最优的不足,提出人工蜂群算法和K均值聚类算法相结合的想法,即基于人工蜂群优化的K均值聚类算法;通过全局寻优能力强的人工蜂群算法初始化K均值的聚类中心并优化聚类中心的位置,从而帮助K均值跳出局部极值,优化聚类效果;将混合聚类算法用Iris、Red Wine和New Red Wine数据集做聚类测试,结果表明该算法既克服了原始K均值聚类算法容易受初始聚类中心影响和不稳定的缺点,又具有良好的性能和聚类效果。展开更多
典型K均值聚类算法的聚类中心个数和聚类中心的选取对彩色图像分割的精度影响较大,其主要体现在彩色图像的特征相似度(feature similarity of color,FSIMC)不高。提出一种基于遗传算法的K均值聚类分割法(GA-K-Means)。每条染色体的基因...典型K均值聚类算法的聚类中心个数和聚类中心的选取对彩色图像分割的精度影响较大,其主要体现在彩色图像的特征相似度(feature similarity of color,FSIMC)不高。提出一种基于遗传算法的K均值聚类分割法(GA-K-Means)。每条染色体的基因由聚类中心数目和聚类中心点两部分组成,并且将彩色图像的FSIMC作为适应度函数值。首先将彩色图像转换到Lab颜色空间,然后以步进和遗传算子相结合的方式搜索最佳聚类中心个数和聚类中心进行分割。把18幅不同类型的图像分别按照K均值聚类法、GA-K-Means分割法、模糊C均值聚类(fuzzy C-means clustering,FCM)分割法进行实验。结果表明,采用GA-K-Means分割的18幅图像,其FSIMC值相应的比另外2种分割法得到的FSIMC值高10%左右,其分割时间比另外2种分割法略长。展开更多
为解决用户群体移动轨迹划分和密度峰值聚类算法自身局限性的问题,以校园轨迹为对象,考虑时间和位置语义信息层面的信息,建立网络用户间的相似性度量模型,提出一种基于共享近邻贡献度的密度峰值聚类算法(density peak clustering based ...为解决用户群体移动轨迹划分和密度峰值聚类算法自身局限性的问题,以校园轨迹为对象,考虑时间和位置语义信息层面的信息,建立网络用户间的相似性度量模型,提出一种基于共享近邻贡献度的密度峰值聚类算法(density peak clustering based on shared nearest neighbor contribution,SNNC-DPC),结合信息熵理论,通过最小化局部密度熵自适应选择截断距离;在局部密度计算上,利用共享近邻贡献度重新计算局部密度,更加全面地反映数据分布的特性;采用非线性变换方法选取决策值,解决聚类中心选取困难且方法单一的问题。在真实校园轨迹数据集上实验,验证了改进算法的有效性。展开更多
针对传统K-means算法因初始聚类中心的随机性而导致聚类结果产生很大的波动性问题,提出一种基于最小距离乘积聚类算法CAMDP(Clustering Algorithm based on Min-Distance Product),利用数次抽样技术,在得到的聚类中心集合上继续使用最...针对传统K-means算法因初始聚类中心的随机性而导致聚类结果产生很大的波动性问题,提出一种基于最小距离乘积聚类算法CAMDP(Clustering Algorithm based on Min-Distance Product),利用数次抽样技术,在得到的聚类中心集合上继续使用最小乘积法寻找最佳的初始聚类中心,较大程度减少了K-means聚类算法对初值选取的随机性。实验结果表明:改进后的K-means算法既考虑了网络结构的拓扑信息,又考虑了节点的属性特征,为社区划分提供了有力的决策支持。展开更多
针对K-means算法进行大跨屋盖结构表面风荷载分区中存在的分类数k值需凭经验事先给定以及所有初始聚类中心均需随机选取带来的分类情况数过多、从中寻找最优分类结果工作量大且效率低的问题,提出基于改进K-means算法的大跨屋盖结构表面...针对K-means算法进行大跨屋盖结构表面风荷载分区中存在的分类数k值需凭经验事先给定以及所有初始聚类中心均需随机选取带来的分类情况数过多、从中寻找最优分类结果工作量大且效率低的问题,提出基于改进K-means算法的大跨屋盖结构表面风荷载分区方法。首先,建立分类数k与其相应测点风荷载的误差平方和(Sum of the Squared Errors:SSE)关系曲线,引入手肘法基本思想,实现最优分类数kst值的精准识别;其次,在首个初始聚类中心随机选取基础上,引入轮盘法基本思想,完成对剩余初始聚类中心的高效选取;然后,根据类内紧凑、类间分散的原则,通过类内紧凑性判定指标S(k)和类间分散性判定指标D(k),构造并借助SD(k)值有效性检验,得到最优的风荷载分区结果;最后,以北京奥林匹克网球中心大跨悬挑屋盖结构为例,针对风洞试验所得风荷载测试结果,采用所提方法对其表面最不利风压系数进行分区计算,并与传统K-means算法进行对比,结果表明,所提方法能够高效实现大跨屋盖结构表面风压分区计算,具有较好的工程应用价值。展开更多
文摘提出了一个结合融合空间约束的模糊C均值(Fuzzy C means with spatial constraints,FCMS)聚类与变分水平集的图像模糊聚类分割模型.在该模型中引入了一个基于图像局部信息和空间信息的外部模糊聚类能量,从而可以获取精确的局部图像的空间特征,使得本文模型对噪声图像的聚类分割具有较强的鲁棒性.采用不同类型的实验图像,将本文模型与10个不同类型的图像分割模型进行了对比实验,实验结果显示本文模型能克服图像中噪声影响并取得较满意的聚类分割结果.
文摘为了改善K均值聚类算法对初始聚类中心敏感和易于陷入局部最优的不足,提出人工蜂群算法和K均值聚类算法相结合的想法,即基于人工蜂群优化的K均值聚类算法;通过全局寻优能力强的人工蜂群算法初始化K均值的聚类中心并优化聚类中心的位置,从而帮助K均值跳出局部极值,优化聚类效果;将混合聚类算法用Iris、Red Wine和New Red Wine数据集做聚类测试,结果表明该算法既克服了原始K均值聚类算法容易受初始聚类中心影响和不稳定的缺点,又具有良好的性能和聚类效果。
文摘为解决用户群体移动轨迹划分和密度峰值聚类算法自身局限性的问题,以校园轨迹为对象,考虑时间和位置语义信息层面的信息,建立网络用户间的相似性度量模型,提出一种基于共享近邻贡献度的密度峰值聚类算法(density peak clustering based on shared nearest neighbor contribution,SNNC-DPC),结合信息熵理论,通过最小化局部密度熵自适应选择截断距离;在局部密度计算上,利用共享近邻贡献度重新计算局部密度,更加全面地反映数据分布的特性;采用非线性变换方法选取决策值,解决聚类中心选取困难且方法单一的问题。在真实校园轨迹数据集上实验,验证了改进算法的有效性。
文摘针对传统K-means算法因初始聚类中心的随机性而导致聚类结果产生很大的波动性问题,提出一种基于最小距离乘积聚类算法CAMDP(Clustering Algorithm based on Min-Distance Product),利用数次抽样技术,在得到的聚类中心集合上继续使用最小乘积法寻找最佳的初始聚类中心,较大程度减少了K-means聚类算法对初值选取的随机性。实验结果表明:改进后的K-means算法既考虑了网络结构的拓扑信息,又考虑了节点的属性特征,为社区划分提供了有力的决策支持。
文摘针对K-means算法进行大跨屋盖结构表面风荷载分区中存在的分类数k值需凭经验事先给定以及所有初始聚类中心均需随机选取带来的分类情况数过多、从中寻找最优分类结果工作量大且效率低的问题,提出基于改进K-means算法的大跨屋盖结构表面风荷载分区方法。首先,建立分类数k与其相应测点风荷载的误差平方和(Sum of the Squared Errors:SSE)关系曲线,引入手肘法基本思想,实现最优分类数kst值的精准识别;其次,在首个初始聚类中心随机选取基础上,引入轮盘法基本思想,完成对剩余初始聚类中心的高效选取;然后,根据类内紧凑、类间分散的原则,通过类内紧凑性判定指标S(k)和类间分散性判定指标D(k),构造并借助SD(k)值有效性检验,得到最优的风荷载分区结果;最后,以北京奥林匹克网球中心大跨悬挑屋盖结构为例,针对风洞试验所得风荷载测试结果,采用所提方法对其表面最不利风压系数进行分区计算,并与传统K-means算法进行对比,结果表明,所提方法能够高效实现大跨屋盖结构表面风压分区计算,具有较好的工程应用价值。