Unmanned aerial vehicles(UAVs) enable flexible networking functions in emergency scenarios.However,due to the movement characteristic of ground users(GUs),it is challenging to capture the interactions among GUs.Thus,w...Unmanned aerial vehicles(UAVs) enable flexible networking functions in emergency scenarios.However,due to the movement characteristic of ground users(GUs),it is challenging to capture the interactions among GUs.Thus,we propose a learningbased dynamic connectivity maintenance architecture to reduce the delay for the UAV-assisted device-todevice(D2D) multicast communication.In this paper,each UAV transmits information to a selected GU,and then other GUs receive the information in a multi-hop manner.To minimize the total delay while ensuring that all GUs receive the information,we decouple it into three subproblems according to the time division on the topology:For the cluster-head selection,we adopt the Whale Optimization Algorithm(WOA) to imitate the hunting behavior of whales by abstracting the UAVs and cluster-heads into whales and preys,respectively;For the D2D multi-hop link establishment,we make the best of social relationships between GUs,and propose a node mapping algorithm based on the balanced spanning tree(BST) with reconfiguration to minimize the number of hops;For the dynamic connectivity maintenance,Restricted Q-learning(RQL) is utilized to learn the optimal multicast timeslot.Finally,the simulation results show that our proposed algorithms perfor better than other benchmark algorithms in the dynamic scenario.展开更多
Cluster-based architectures are one of the most practical solutions in order to cope with the requirements of large-scale wireless sensor networks (WSN). Cluster-head election problem is one of the basic QoS requireme...Cluster-based architectures are one of the most practical solutions in order to cope with the requirements of large-scale wireless sensor networks (WSN). Cluster-head election problem is one of the basic QoS requirements of WSNs, yet this problem has not been sufficiently explored in the context of cluster-based sensor networks. Specifically, it is not known how to select the best candidates for the cluster head roles. In this paper, we investigate the cluster head election problem, specifically concentrating on applications where the energy of full network is the main requirement, and we propose a new approach to exploit efficiently the network energy, by reducing the energy consumed for cluster forming.展开更多
The radial basis function (RBF), a kind of neural networks algorithm, is adopted to select clusterheads. It has many advantages such as simple parallel distributed computation, distributed storage, and fast learning...The radial basis function (RBF), a kind of neural networks algorithm, is adopted to select clusterheads. It has many advantages such as simple parallel distributed computation, distributed storage, and fast learning. Four factors related to a node becoming a cluster-head are drawn by analysis, which are energy ( energy available in each node), number (the number of neighboring nodes), centrality ( a value to classify the nodes based on the proximity how central the node is to the cluster), and location (the distance between the base station and the node). The factors are as input variables of neural networks and the output variable is suitability that is the degree of a node becoming a cluster head. A group of cluster-heads are selected according to the size of network. Then the base station broadcasts a message containing the list of cluster-heads' IDs to all nodes. After that, each cluster-head announces its new status to all its neighbors and sets up a new cluster. If a node around it receives the message, it registers itself to be a member of the cluster. After identifying all the members, the cluster-head manages them and carries out data aggregation in each cluster. Thus data flowing in the network decreases and energy consumption of nodes decreases accordingly. Experimental results show that, compared with other algorithms, the proposed algorithm can significantly increase the lifetime of the sensor network.展开更多
Water-environment monitoring network (WMN) is a wireless sensor network based real-time system, which collects, transmits, analyzes and processes water-environment parameters in large area. Both cluster selection mech...Water-environment monitoring network (WMN) is a wireless sensor network based real-time system, which collects, transmits, analyzes and processes water-environment parameters in large area. Both cluster selection mechanisms and energy saving strategies play an important role on designing network routing protocols for the WMN. Since those existing routing algorithms can not be used directly in the WMN, we thus propose an improved version of LEACH, a LEACH-Head Expected Frequency Appraisal (LEACH-HEFA) algorithm, for the WMN in this paper. Simulation results show that the LEACH-HEFA can balance the energy consumption of nodes, rationalize the clustering process and prolong the network lifetime significantly in the WMN. It indicates that the LEACH-HEFA is suitable to the WMN.展开更多
基金supported by the Future Scientists Program of China University of Mining and Technology(2020WLKXJ030)the Postgraduate Research&Practice Innovation Program of Jiangsu Province(KYCX201993).
文摘Unmanned aerial vehicles(UAVs) enable flexible networking functions in emergency scenarios.However,due to the movement characteristic of ground users(GUs),it is challenging to capture the interactions among GUs.Thus,we propose a learningbased dynamic connectivity maintenance architecture to reduce the delay for the UAV-assisted device-todevice(D2D) multicast communication.In this paper,each UAV transmits information to a selected GU,and then other GUs receive the information in a multi-hop manner.To minimize the total delay while ensuring that all GUs receive the information,we decouple it into three subproblems according to the time division on the topology:For the cluster-head selection,we adopt the Whale Optimization Algorithm(WOA) to imitate the hunting behavior of whales by abstracting the UAVs and cluster-heads into whales and preys,respectively;For the D2D multi-hop link establishment,we make the best of social relationships between GUs,and propose a node mapping algorithm based on the balanced spanning tree(BST) with reconfiguration to minimize the number of hops;For the dynamic connectivity maintenance,Restricted Q-learning(RQL) is utilized to learn the optimal multicast timeslot.Finally,the simulation results show that our proposed algorithms perfor better than other benchmark algorithms in the dynamic scenario.
文摘Cluster-based architectures are one of the most practical solutions in order to cope with the requirements of large-scale wireless sensor networks (WSN). Cluster-head election problem is one of the basic QoS requirements of WSNs, yet this problem has not been sufficiently explored in the context of cluster-based sensor networks. Specifically, it is not known how to select the best candidates for the cluster head roles. In this paper, we investigate the cluster head election problem, specifically concentrating on applications where the energy of full network is the main requirement, and we propose a new approach to exploit efficiently the network energy, by reducing the energy consumed for cluster forming.
基金The National Natural Science Foundation of China(No.60472053),the Natural Science Foundation of Jiangsu Province(No.BK2003055),the Specialized Research Fund for the Doctoral Pro-gram of Higher Education (No.20030286017).
文摘The radial basis function (RBF), a kind of neural networks algorithm, is adopted to select clusterheads. It has many advantages such as simple parallel distributed computation, distributed storage, and fast learning. Four factors related to a node becoming a cluster-head are drawn by analysis, which are energy ( energy available in each node), number (the number of neighboring nodes), centrality ( a value to classify the nodes based on the proximity how central the node is to the cluster), and location (the distance between the base station and the node). The factors are as input variables of neural networks and the output variable is suitability that is the degree of a node becoming a cluster head. A group of cluster-heads are selected according to the size of network. Then the base station broadcasts a message containing the list of cluster-heads' IDs to all nodes. After that, each cluster-head announces its new status to all its neighbors and sets up a new cluster. If a node around it receives the message, it registers itself to be a member of the cluster. After identifying all the members, the cluster-head manages them and carries out data aggregation in each cluster. Thus data flowing in the network decreases and energy consumption of nodes decreases accordingly. Experimental results show that, compared with other algorithms, the proposed algorithm can significantly increase the lifetime of the sensor network.
文摘Water-environment monitoring network (WMN) is a wireless sensor network based real-time system, which collects, transmits, analyzes and processes water-environment parameters in large area. Both cluster selection mechanisms and energy saving strategies play an important role on designing network routing protocols for the WMN. Since those existing routing algorithms can not be used directly in the WMN, we thus propose an improved version of LEACH, a LEACH-Head Expected Frequency Appraisal (LEACH-HEFA) algorithm, for the WMN in this paper. Simulation results show that the LEACH-HEFA can balance the energy consumption of nodes, rationalize the clustering process and prolong the network lifetime significantly in the WMN. It indicates that the LEACH-HEFA is suitable to the WMN.