期刊导航
期刊开放获取
cqvip
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于云分段最优熵算法的风电机组异常数据识别研究
被引量:
22
1
作者
杨茂
杨琼琼
《中国电机工程学报》
EI
CSCD
北大核心
2018年第8期2294-2301,共8页
风电场的历史运行数据尤其是风速和功率数据是研究风电功率波动特性、风电功率预测、风电功率曲线计算和测试的重要基础。但风电场实际采集到的数据中通常会出现大量异常数据,而这些异常数据是由各机组的异常数据构成,故对风电机组进行...
风电场的历史运行数据尤其是风速和功率数据是研究风电功率波动特性、风电功率预测、风电功率曲线计算和测试的重要基础。但风电场实际采集到的数据中通常会出现大量异常数据,而这些异常数据是由各机组的异常数据构成,故对风电机组进行异常数据识别具有重要意义。该文以风电机组的风速–功率曲线为研究基础,提出了用于机组异常数据识别的云分段最优熵算法,该算法基于云模型的熵识别机组发电异常的数据集,对数据进行分离。结果表明,该算法可以有效地识别出机组异常数据,提高异常数据的正确识别率,保证数据的准确性。
展开更多
关键词
风速–功率曲线
异常数据
云模型
云分段最优熵
下载PDF
职称材料
题名
基于云分段最优熵算法的风电机组异常数据识别研究
被引量:
22
1
作者
杨茂
杨琼琼
机构
东北电力大学电气工程学院
出处
《中国电机工程学报》
EI
CSCD
北大核心
2018年第8期2294-2301,共8页
基金
国家重点研发计划项目(2016YFB0900101)~~
文摘
风电场的历史运行数据尤其是风速和功率数据是研究风电功率波动特性、风电功率预测、风电功率曲线计算和测试的重要基础。但风电场实际采集到的数据中通常会出现大量异常数据,而这些异常数据是由各机组的异常数据构成,故对风电机组进行异常数据识别具有重要意义。该文以风电机组的风速–功率曲线为研究基础,提出了用于机组异常数据识别的云分段最优熵算法,该算法基于云模型的熵识别机组发电异常的数据集,对数据进行分离。结果表明,该算法可以有效地识别出机组异常数据,提高异常数据的正确识别率,保证数据的准确性。
关键词
风速–功率曲线
异常数据
云模型
云分段最优熵
Keywords
wind-power
curve
abnormal
data
cloud
model
cloud
segment
optimal
entropy
分类号
TM614 [电气工程—电力系统及自动化]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于云分段最优熵算法的风电机组异常数据识别研究
杨茂
杨琼琼
《中国电机工程学报》
EI
CSCD
北大核心
2018
22
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部