Three different kinds of closure model of fiber orientation tensors were applied to simulate numerically the hydrodynamic stability of fiber suspensions in a channel flow. The effects of closure models and three_dimen...Three different kinds of closure model of fiber orientation tensors were applied to simulate numerically the hydrodynamic stability of fiber suspensions in a channel flow. The effects of closure models and three_dimensional (3_D) orientation distribution of fibers on the results of stability analysis were examined. It is found that the relationship of the behavior in hydrodynamic stability and the parameter of the fiber given by all the three models are the same. However, the attenuation of flow instability is most distinct using 3_D hybrid model because the orientation of the fiber departures from the flow direction, and least apparent using its 2_D counterpart for that the fibers show a tendency towards alignment with the flow direction in this case.展开更多
Closure models started from Chou's work have been developed for more than 70 years, aiming at providing analytical tools to describe turbulent flows in the spectral space. In this study, a preliminary attempt is pres...Closure models started from Chou's work have been developed for more than 70 years, aiming at providing analytical tools to describe turbulent flows in the spectral space. In this study, a preliminary attempt is presented to introduce a closure model in the physical space, using the velocity structure functions as key parameters. The present closure model appears to qualitatively reproduce the asymptotic scaling behav- iors at small and large scales, despite some inappropriate behaviors such as oscillations. Therefore, further improvements of the present model are expected to provide appropriate descriptions of turbulent flows in the physical space.展开更多
In this study, the Reynolds-averaged Navier-Stokes (RANS) method is employed to simulate the flow within and over an intersection model with three kinds of k-ε turbulence closure schemes, namely, standard model, re...In this study, the Reynolds-averaged Navier-Stokes (RANS) method is employed to simulate the flow within and over an intersection model with three kinds of k-ε turbulence closure schemes, namely, standard model, renormalization group (RNG) model and realizable k-ε model. The comparison between the simulated and observed flow fields shows that the RANS simulation with all the three turbulence models cannot completely and accurately reproduce the observed flow field in all details. A detailed comparison between the predicted profiles of wind velocities and the measured data shows that the realizble k-ε model is the best one among the three turbulence closure models in general. However, the extent to which the improvement is achieved by the realizable k-ε model is still not enough to completely and accurately describe the turbulent flow in a relatively complex environment.展开更多
Based on a pseudo-spectral large eddy simulation (LES) model, an LES model with an anisotropy turbulent kinetic energy (TKE) closure model and an explicit multi-stage third-order Runge-Kutta scheme is established. The...Based on a pseudo-spectral large eddy simulation (LES) model, an LES model with an anisotropy turbulent kinetic energy (TKE) closure model and an explicit multi-stage third-order Runge-Kutta scheme is established. The modeling and analysis show that the LES model can simulate the planetary boundary layer (PBL) with a uniform underlying surface under various stratifications very well. Then, similar to the description of a forest canopy, the drag term on momentum and the production term of TKE by subgrid city buildings are introduced into the LES equations to account for the area-averaged effect of the subgrid urban canopy elements and to simulate the meteorological fields of the urban boundary layer (UBL). Numerical experiments and comparison analysis show that: (1) the result from the LES of the UBL with a proposed formula for the drag coefficient is consistent and comparable with that from wind tunnel experiments and an urban subdomain scale model; (2) due to the effect of urban buildings, the wind velocity near the canopy is decreased, turbulence is intensified, TKE, variance, and momentum flux are increased, the momentum and heat flux at the top of the PBL are increased, and the development of the PBL is quickened; (3) the height of the roughness sublayer (RS) of the actual city buildings is the maximum building height (1.5-3 times the mean building height), and a constant flux layer (CFL) exists in the lower part of the UBL.展开更多
基金ProjectsupportedbytheNationalNaturalScienceFoundationofChina (No .1 0 3 72 0 90 )
文摘Three different kinds of closure model of fiber orientation tensors were applied to simulate numerically the hydrodynamic stability of fiber suspensions in a channel flow. The effects of closure models and three_dimensional (3_D) orientation distribution of fibers on the results of stability analysis were examined. It is found that the relationship of the behavior in hydrodynamic stability and the parameter of the fiber given by all the three models are the same. However, the attenuation of flow instability is most distinct using 3_D hybrid model because the orientation of the fiber departures from the flow direction, and least apparent using its 2_D counterpart for that the fibers show a tendency towards alignment with the flow direction in this case.
基金supported by the National Natural Science Foundation of China(Nos.11572025,11202013,and 51420105008)
文摘Closure models started from Chou's work have been developed for more than 70 years, aiming at providing analytical tools to describe turbulent flows in the spectral space. In this study, a preliminary attempt is presented to introduce a closure model in the physical space, using the velocity structure functions as key parameters. The present closure model appears to qualitatively reproduce the asymptotic scaling behav- iors at small and large scales, despite some inappropriate behaviors such as oscillations. Therefore, further improvements of the present model are expected to provide appropriate descriptions of turbulent flows in the physical space.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 40233030, 40405004 and 40405014) and the Special Program of the Scientific and Social Practices for Graduate Students in Chinese Academy of Sciences, China.
文摘In this study, the Reynolds-averaged Navier-Stokes (RANS) method is employed to simulate the flow within and over an intersection model with three kinds of k-ε turbulence closure schemes, namely, standard model, renormalization group (RNG) model and realizable k-ε model. The comparison between the simulated and observed flow fields shows that the RANS simulation with all the three turbulence models cannot completely and accurately reproduce the observed flow field in all details. A detailed comparison between the predicted profiles of wind velocities and the measured data shows that the realizble k-ε model is the best one among the three turbulence closure models in general. However, the extent to which the improvement is achieved by the realizable k-ε model is still not enough to completely and accurately describe the turbulent flow in a relatively complex environment.
基金The research was supported by the National Natural Science Foundation of China under Grant Nos.40333027 and 40075004.
文摘Based on a pseudo-spectral large eddy simulation (LES) model, an LES model with an anisotropy turbulent kinetic energy (TKE) closure model and an explicit multi-stage third-order Runge-Kutta scheme is established. The modeling and analysis show that the LES model can simulate the planetary boundary layer (PBL) with a uniform underlying surface under various stratifications very well. Then, similar to the description of a forest canopy, the drag term on momentum and the production term of TKE by subgrid city buildings are introduced into the LES equations to account for the area-averaged effect of the subgrid urban canopy elements and to simulate the meteorological fields of the urban boundary layer (UBL). Numerical experiments and comparison analysis show that: (1) the result from the LES of the UBL with a proposed formula for the drag coefficient is consistent and comparable with that from wind tunnel experiments and an urban subdomain scale model; (2) due to the effect of urban buildings, the wind velocity near the canopy is decreased, turbulence is intensified, TKE, variance, and momentum flux are increased, the momentum and heat flux at the top of the PBL are increased, and the development of the PBL is quickened; (3) the height of the roughness sublayer (RS) of the actual city buildings is the maximum building height (1.5-3 times the mean building height), and a constant flux layer (CFL) exists in the lower part of the UBL.