Climate sensitivity and feedbacks are basic and important metrics to a climate system. They determine how large surface air temperature will increase under CO_2 forcing ultimately, which is essential for carbon reduct...Climate sensitivity and feedbacks are basic and important metrics to a climate system. They determine how large surface air temperature will increase under CO_2 forcing ultimately, which is essential for carbon reduction policies to achieve a specific warming target. In this study, these metrics are analyzed in a climate system model newly developed by the Chinese Academy of Meteorological Sciences(CAMS-CSM) and compared with multi-model results from the Coupled Model Comparison Project phase 5(CMIP5). Based on two idealized CO_2 forcing scenarios, i.e.,abruptly quadrupled CO_2 and CO_2 increasing 1% per year, the equilibrium climate sensitivity(ECS) and transient climate response(TCR) in CAMS-CSM are estimated to be about 2.27 and 1.88 K, respectively. The ECS is near the lower bound of CMIP5 models whereas the TCR is closer to the multi-model ensemble mean(MME) of CMIP5 due to compensation of a relatively low ocean heat uptake(OHU) efficiency. The low ECS is caused by an unusually negative climate feedback in CAMS-CSM, which is attributed to cloud shortwave feedback(λSWCL) over the tropical Indo-Pacific Ocean.The CMIP5 ensemble shows that more negative λSWCL is related to larger increase in low-level(925–700 hPa)cloud over the tropical Indo-Pacific under warming, which can explain about 90% of λSWCL in CAMS-CSM. Static stability of planetary boundary layer in the pre-industrial simulation is a critical factor controlling the low-cloud response and λSWCL across the CMIP5 models and CAMS-CSM. Evidently, weak stability in CAMS-CSM favors lowcloud formation under warming due to increased low-level convergence and relative humidity, with the help of enhanced evaporation from the warming tropical Pacific. Consequently, cloud liquid water increases, amplifying cloud albedo, and eventually contributing to the unusually negative λSWCL and low ECS in CAMS-CSM. Moreover, the OHU may influence climate feedbacks and then the ECS by modulating regional sea surface temperature responses.展开更多
The research on the respondence and feedback of modern sand deserts to the climate change is an important component part in the studies on the global climate change. Deserts respond to the climate change, meanwhile, t...The research on the respondence and feedback of modern sand deserts to the climate change is an important component part in the studies on the global climate change. Deserts respond to the climate change, meanwhile, they affect the climate with their feedback of peculiar environment during the respondence. Many researches on desert climate have been carried out at home and abroad. However, there is little research on the respondence and feedback of modern fixed, semi-fixed and mobile deserts in arid areas to the climate change, in which the factor analysis as well as the parameter changing effects is especially the difficult problem all along. In this note, the parameters of the respondence and feedback of Gurbantunggut Desert to the climate change are measured and analyzed, some variable parameters of water-heat exchange are obtained, and a numerical model of desertification is developed according to a series of climate change of about 40 years and the variable relations of meteorological and physical展开更多
Climate sensitivity represents the response of climate system to doubled CO2 concentration relative to the preindustrial level, which is one of the sources of uncertainty in climate projections. It is unclear how the ...Climate sensitivity represents the response of climate system to doubled CO2 concentration relative to the preindustrial level, which is one of the sources of uncertainty in climate projections. It is unclear how the climate sensitivity and feedbacks will change as a model system is upgraded from the Coupled Model Intercomparison Project Phase 5(CMIP5) to CMIP6. In this paper, we address this issue by comparing two versions of the Beijing Climate Center Climate System Model(BCC-CSM) participating in CMIP6 and CMIP5, i.e., BCC-CSM2-MR and BCC-CSM1.1 m,which have the same horizontal resolution but different physical parameterizations. The results show that the equilibrium climate sensitivity(ECS) of BCC-CSM slightly increases from CMIP5(2.94 K) to CMIP6(3.04 K). The small changes in the ECS result from compensation between decreased effective radiative forcing(ERF) and the increased net feedback. In contrast, the transient climate response(TCR) evidently decreases from 2.19 to 1.40 K, nearly the lower bound of the CMIP6 multimodel spread. The low TCR in BCC-CSM2-MR is mainly caused by the small ERF overly even though the ocean heat uptake(OHU) efficiency is substantially improved from that in BCC-CSM1.1 m.Cloud shortwave feedback(λSWCL) is found to be the major cause of the increased net feedback in BCC-CSM2-MR,mainly over the Southern Ocean. The strong positive λSWCL in BCC-CSM2-MR is coincidently related to the weakened sea ice-albedo feedback in the same region. This result is caused by reduced sea ice coverage simulated during the preindustrial cold season, which leads to reduced melting per 1-K global warming. As a result, in BCCCSM2-MR, reduced surface heat flux and strengthened static stability of the planetary boundary layer cause a decrease in low-level clouds and an increase in incident shortwave radiation. This study reveals the important compensation between λSWCL and sea ice-albedo feedback in the Southern Ocean.展开更多
基金Supported by the National Key Research and Development Program(2017YFA0603503)National Natural Science Foundation of China(41605057 and 41661144009)
文摘Climate sensitivity and feedbacks are basic and important metrics to a climate system. They determine how large surface air temperature will increase under CO_2 forcing ultimately, which is essential for carbon reduction policies to achieve a specific warming target. In this study, these metrics are analyzed in a climate system model newly developed by the Chinese Academy of Meteorological Sciences(CAMS-CSM) and compared with multi-model results from the Coupled Model Comparison Project phase 5(CMIP5). Based on two idealized CO_2 forcing scenarios, i.e.,abruptly quadrupled CO_2 and CO_2 increasing 1% per year, the equilibrium climate sensitivity(ECS) and transient climate response(TCR) in CAMS-CSM are estimated to be about 2.27 and 1.88 K, respectively. The ECS is near the lower bound of CMIP5 models whereas the TCR is closer to the multi-model ensemble mean(MME) of CMIP5 due to compensation of a relatively low ocean heat uptake(OHU) efficiency. The low ECS is caused by an unusually negative climate feedback in CAMS-CSM, which is attributed to cloud shortwave feedback(λSWCL) over the tropical Indo-Pacific Ocean.The CMIP5 ensemble shows that more negative λSWCL is related to larger increase in low-level(925–700 hPa)cloud over the tropical Indo-Pacific under warming, which can explain about 90% of λSWCL in CAMS-CSM. Static stability of planetary boundary layer in the pre-industrial simulation is a critical factor controlling the low-cloud response and λSWCL across the CMIP5 models and CAMS-CSM. Evidently, weak stability in CAMS-CSM favors lowcloud formation under warming due to increased low-level convergence and relative humidity, with the help of enhanced evaporation from the warming tropical Pacific. Consequently, cloud liquid water increases, amplifying cloud albedo, and eventually contributing to the unusually negative λSWCL and low ECS in CAMS-CSM. Moreover, the OHU may influence climate feedbacks and then the ECS by modulating regional sea surface temperature responses.
文摘The research on the respondence and feedback of modern sand deserts to the climate change is an important component part in the studies on the global climate change. Deserts respond to the climate change, meanwhile, they affect the climate with their feedback of peculiar environment during the respondence. Many researches on desert climate have been carried out at home and abroad. However, there is little research on the respondence and feedback of modern fixed, semi-fixed and mobile deserts in arid areas to the climate change, in which the factor analysis as well as the parameter changing effects is especially the difficult problem all along. In this note, the parameters of the respondence and feedback of Gurbantunggut Desert to the climate change are measured and analyzed, some variable parameters of water-heat exchange are obtained, and a numerical model of desertification is developed according to a series of climate change of about 40 years and the variable relations of meteorological and physical
基金Supported by the National Key Research and Development Program of China (2016YFA0602602 and 2017YFA0603503)National Natural Science Foundation of China (41605057)。
文摘Climate sensitivity represents the response of climate system to doubled CO2 concentration relative to the preindustrial level, which is one of the sources of uncertainty in climate projections. It is unclear how the climate sensitivity and feedbacks will change as a model system is upgraded from the Coupled Model Intercomparison Project Phase 5(CMIP5) to CMIP6. In this paper, we address this issue by comparing two versions of the Beijing Climate Center Climate System Model(BCC-CSM) participating in CMIP6 and CMIP5, i.e., BCC-CSM2-MR and BCC-CSM1.1 m,which have the same horizontal resolution but different physical parameterizations. The results show that the equilibrium climate sensitivity(ECS) of BCC-CSM slightly increases from CMIP5(2.94 K) to CMIP6(3.04 K). The small changes in the ECS result from compensation between decreased effective radiative forcing(ERF) and the increased net feedback. In contrast, the transient climate response(TCR) evidently decreases from 2.19 to 1.40 K, nearly the lower bound of the CMIP6 multimodel spread. The low TCR in BCC-CSM2-MR is mainly caused by the small ERF overly even though the ocean heat uptake(OHU) efficiency is substantially improved from that in BCC-CSM1.1 m.Cloud shortwave feedback(λSWCL) is found to be the major cause of the increased net feedback in BCC-CSM2-MR,mainly over the Southern Ocean. The strong positive λSWCL in BCC-CSM2-MR is coincidently related to the weakened sea ice-albedo feedback in the same region. This result is caused by reduced sea ice coverage simulated during the preindustrial cold season, which leads to reduced melting per 1-K global warming. As a result, in BCCCSM2-MR, reduced surface heat flux and strengthened static stability of the planetary boundary layer cause a decrease in low-level clouds and an increase in incident shortwave radiation. This study reveals the important compensation between λSWCL and sea ice-albedo feedback in the Southern Ocean.