期刊导航
期刊开放获取
cqvip
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于SVC的证券行情周K线涨跌预测
被引量:
1
1
作者
王智钢
王池社
+1 位作者
李广水
王蓁蓁
《金陵科技学院学报》
2013年第1期15-19,共5页
线性预测方法难以描述金融时间序列的非线性特征,神经网络具有非线性逼近能力,但会出现"过学习"现象,已有研究用SVR对证券行情进行短期预测,因证券短期行情具有一定随机性,预测的正确率和实际意义并不理想。提出一种基于SVC...
线性预测方法难以描述金融时间序列的非线性特征,神经网络具有非线性逼近能力,但会出现"过学习"现象,已有研究用SVR对证券行情进行短期预测,因证券短期行情具有一定随机性,预测的正确率和实际意义并不理想。提出一种基于SVC的证券行情周K线涨跌预测模型,该模型仿真实验的综合预测正确率为60.78%,上涨预测正确率为62.5%,按照模型预测结果进行证券交易的年化收益率可达10.72%。
展开更多
关键词
模式识别
支持向量机
分类
行情预测
下载PDF
职称材料
题名
基于SVC的证券行情周K线涨跌预测
被引量:
1
1
作者
王智钢
王池社
李广水
王蓁蓁
机构
金陵科技学院信息技术学院
江苏省信息分析工程实验室
出处
《金陵科技学院学报》
2013年第1期15-19,共5页
文摘
线性预测方法难以描述金融时间序列的非线性特征,神经网络具有非线性逼近能力,但会出现"过学习"现象,已有研究用SVR对证券行情进行短期预测,因证券短期行情具有一定随机性,预测的正确率和实际意义并不理想。提出一种基于SVC的证券行情周K线涨跌预测模型,该模型仿真实验的综合预测正确率为60.78%,上涨预测正确率为62.5%,按照模型预测结果进行证券交易的年化收益率可达10.72%。
关键词
模式识别
支持向量机
分类
行情预测
Keywords
pattern
recognition
support
vector
machine
classification
securities market
fore
-
cast
分类号
TP181 [自动化与计算机技术—控制理论与控制工程]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于SVC的证券行情周K线涨跌预测
王智钢
王池社
李广水
王蓁蓁
《金陵科技学院学报》
2013
1
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部