The baobab, Adansonia digitata L. plays an important role in the economy of local populations. The oil from the seeds of the baobab fruit is nowadays highly prized because of its numerous cosmetic and therapeutic appl...The baobab, Adansonia digitata L. plays an important role in the economy of local populations. The oil from the seeds of the baobab fruit is nowadays highly prized because of its numerous cosmetic and therapeutic applications and its composition of unsaturated fatty acids, sterols and tocopherols. However, unlike refined oils, locally extracted baobab oil has not undergone purification operations to ensure its quality. Only a filtration on special cloths is carried out after decantation. Indeed, the oil obtained after pressing is cloudy because of the presence of various impurities. It therefore requires treatment operations to make it more attractive and of higher quality. Therefore, in order to provide innovative solutions to local companies to improve the quality of vegetable oils, a study of clarification (treatment) of crude oil is necessary. An experimental device has been developed in the laboratory. It includes a glass column and a filter bed of dune sand and activated carbon. This study has shown the efficiency of the experimental device. Indeed, the activated carbon, thanks to its adsorbing power, has allowed a significant decrease in turbidity at the 5% threshold, from 14.61 NTU for the raw oil to 0.08 NTU for the oil filtered on 3% carbon and 0.033 NTU for the oil filtered on 5% carbon. That is to say an abatement higher than 95%. This decrease in turbidity could be correlated with the decrease in brown index from 187.39<sup>a</sup> for the initial crude oil to 128.53<sup>d</sup> for the oil treated with 3% activated carbon versus 187.59<sup>a</sup> for the oil filtered on cloths. The lowest brown index was observed with the filtration using 5% activated carbon (35.99<sup>b</sup>). Thus, for the yellowness index, only the filtration on 5% charcoal allowed to obtain a significant decrease in yellowness. The yellowing index of the oil with 5% was 44.67<sup>b</sup> against 79.04<sup>a</sup> for the oil filtered with 3% activated carbon, 86.33<sup>a</sup> for the crude oil and 86.46<sup>a</sup> for the oi展开更多
Control of rainfall-runoff particulate matter (PM) and PM-bound chemical loads is challenging; in part due to the wide gradation of PM complex geometries of many unit operations and variable flow rates. Such challen...Control of rainfall-runoff particulate matter (PM) and PM-bound chemical loads is challenging; in part due to the wide gradation of PM complex geometries of many unit operations and variable flow rates. Such challenges and the expense associated with resolving such challenges have led to the relatively common examination of a spectrum of unit operations and processes. This study applies the principles of computa- tional fluid dynamics (CFD) to predict the particle and pollutant clarification behavior of these systems subject to dilute multiphase flows, typical of rainfall-runoff, within computationally reasonable limits, to a scientifically acceptable degree of accuracy. The Navier-Stokes (NS) system of nonlinear partial differential equations for multi- phase hydrodynamics and separation of entrained particles are solved numerically over the unit operation control volume with the boundary and initial conditions defined and then solved numerically until the desired convergence criteria are met. Flow rates examined are scaled based on sizing of common unit operations such as hydrodynamic separators (HS), wet basins, or filters, and are examined from 1 to 100 percent of the system maximum hydraulic operating flow rate. A standard turbulence model is used to resolve flow, and a discrete phase model (DPM) is utilized to examine the particle clarification response. CFD results closely follow physical model results across the entire range of flow rates. Post-processing the CFD predictions provides an in-depth insight into the mechanistic behavior of unit operations by means of three dimensional (3-D) hydraulic profiles and particle trajectories. Results demon- strate the role of scour in the rapid degradation of unit operations that are not maintained. Comparisons are provided between measured and CFD modeled results and a mass balance error is identified. CFD is arguably the most powerful tool available for our profession since continuous simulation modeling.展开更多
文摘The baobab, Adansonia digitata L. plays an important role in the economy of local populations. The oil from the seeds of the baobab fruit is nowadays highly prized because of its numerous cosmetic and therapeutic applications and its composition of unsaturated fatty acids, sterols and tocopherols. However, unlike refined oils, locally extracted baobab oil has not undergone purification operations to ensure its quality. Only a filtration on special cloths is carried out after decantation. Indeed, the oil obtained after pressing is cloudy because of the presence of various impurities. It therefore requires treatment operations to make it more attractive and of higher quality. Therefore, in order to provide innovative solutions to local companies to improve the quality of vegetable oils, a study of clarification (treatment) of crude oil is necessary. An experimental device has been developed in the laboratory. It includes a glass column and a filter bed of dune sand and activated carbon. This study has shown the efficiency of the experimental device. Indeed, the activated carbon, thanks to its adsorbing power, has allowed a significant decrease in turbidity at the 5% threshold, from 14.61 NTU for the raw oil to 0.08 NTU for the oil filtered on 3% carbon and 0.033 NTU for the oil filtered on 5% carbon. That is to say an abatement higher than 95%. This decrease in turbidity could be correlated with the decrease in brown index from 187.39<sup>a</sup> for the initial crude oil to 128.53<sup>d</sup> for the oil treated with 3% activated carbon versus 187.59<sup>a</sup> for the oil filtered on cloths. The lowest brown index was observed with the filtration using 5% activated carbon (35.99<sup>b</sup>). Thus, for the yellowness index, only the filtration on 5% charcoal allowed to obtain a significant decrease in yellowness. The yellowing index of the oil with 5% was 44.67<sup>b</sup> against 79.04<sup>a</sup> for the oil filtered with 3% activated carbon, 86.33<sup>a</sup> for the crude oil and 86.46<sup>a</sup> for the oi
文摘Control of rainfall-runoff particulate matter (PM) and PM-bound chemical loads is challenging; in part due to the wide gradation of PM complex geometries of many unit operations and variable flow rates. Such challenges and the expense associated with resolving such challenges have led to the relatively common examination of a spectrum of unit operations and processes. This study applies the principles of computa- tional fluid dynamics (CFD) to predict the particle and pollutant clarification behavior of these systems subject to dilute multiphase flows, typical of rainfall-runoff, within computationally reasonable limits, to a scientifically acceptable degree of accuracy. The Navier-Stokes (NS) system of nonlinear partial differential equations for multi- phase hydrodynamics and separation of entrained particles are solved numerically over the unit operation control volume with the boundary and initial conditions defined and then solved numerically until the desired convergence criteria are met. Flow rates examined are scaled based on sizing of common unit operations such as hydrodynamic separators (HS), wet basins, or filters, and are examined from 1 to 100 percent of the system maximum hydraulic operating flow rate. A standard turbulence model is used to resolve flow, and a discrete phase model (DPM) is utilized to examine the particle clarification response. CFD results closely follow physical model results across the entire range of flow rates. Post-processing the CFD predictions provides an in-depth insight into the mechanistic behavior of unit operations by means of three dimensional (3-D) hydraulic profiles and particle trajectories. Results demon- strate the role of scour in the rapid degradation of unit operations that are not maintained. Comparisons are provided between measured and CFD modeled results and a mass balance error is identified. CFD is arguably the most powerful tool available for our profession since continuous simulation modeling.