Wing-Wing Interaction (WWI), such as the Clap and Fling Motion (CFM), occurs when two wings are flapping close together, improving performance. We intend to design a hovering Flapping Micro Aerial Vehicle (FMAV)...Wing-Wing Interaction (WWI), such as the Clap and Fling Motion (CFM), occurs when two wings are flapping close together, improving performance. We intend to design a hovering Flapping Micro Aerial Vehicle (FMAV) which makes use of WWI. We investigate the effects of flexibility, kinematic motions, and two- to six-wing flapping configurations on the FMAV through numerical simulations. Results show that a rigid spanwise and flexible chordwise wing produces the highest lift with minimum power. The smoothly varying sinusoidal motion, which is visually similar to the CFM, produces similar lift in comparison to the CFM, while having lower peak power requirement. Lastly, lift produced by each wing of the two-, four-, six-wing configurations is approximately equal. Hence more wings generate higher total lift force, but at the expense of higher drag and power requirement. These results will be beneficial in the understanding of the underlying aerodynamics of WWI, and in improving the performance of our FMAV.展开更多
Hovering ability is one of the most desired features in Flapping-Wing Micro Air Vehicles (FW-MAVs). This paper presents a hybrid design of flapping wing and fixed wing, which combines two flapping wings and two fixe...Hovering ability is one of the most desired features in Flapping-Wing Micro Air Vehicles (FW-MAVs). This paper presents a hybrid design of flapping wing and fixed wing, which combines two flapping wings and two fixed wings to take advantage of the double wing clap-and-fling effect for high thrust production, and utilizes the fixed wings as the stabilizing surfaces for inherently stable hovering flight. Force measurement shows that the effect of wing clap-and-fling significantly enhances the cycle-averaged vertical thrust up to 44.82% at 12.4 Hz. The effect of ventral wing clap-and-fling due to presence of fixed wings produces about 11% increase of thrust-to-power ratio, and the insect-inspired FW-MAV can produce enough cycle-averaged vertical thrust of 14.76 g for lift-offat 10 Hz, and 24 g at maximum frequency of 12.4 Hz. Power measurement indicates that the power consumed for aerodynamic forces and wing inertia, and power loss due to gearbox friction and mechanism inertia was about 80% and 20% of the total input power, respectively. The proposed insect-inspired FW-MAV could endure three-minute flight, and demonstrate a good flight performance in terms of vertical take-off, hovering, and control with an onboard 3.7 V-70 mAh LiPo battery and control system.展开更多
Recently,a novel concept of flapping Micro-Air-Vehicles(FMAVs)with four wings has been proposed,which potentially utilizes the clap-and-fling effect for lift enhancement and agile maneuvers through an adjustment of wi...Recently,a novel concept of flapping Micro-Air-Vehicles(FMAVs)with four wings has been proposed,which potentially utilizes the clap-and-fling effect for lift enhancement and agile maneuvers through an adjustment of wing kinematics.However,the application of the clap-and-fling effect in the four-winged FMAVs is underexplored and the dynamic stability is still unclear.In this paper,aerodynamics and flight dynamic stability of the four-winged FMAVs are studied experimentally and numerically.Results show that the clap-and-fling effect is observed when the flapping frequency is above 18 Hz.Due to the clap-and-fling effect,the lift generation and aerodynamic efficiency are both improved,which is mainly attributed to the fling phase.Further studies show that the clap-and-fling effect becomes weaker as the wing root spacing increases and is almost absent at a wing root spacing of 1.73 chord length.In addition,a wing with an aspect ratio of 3 can increase both lift generation and efficiency due to the clap-and-fling effect.Finally,according to the dynamic stability analysis of the four-winged FMAV,the divergence speed of the lateral oscillation mode is about 4 times faster than that of the longitudinal oscillation mode.Our results can provide guidance on the design and control of four-winged FMAVs.展开更多
文摘Wing-Wing Interaction (WWI), such as the Clap and Fling Motion (CFM), occurs when two wings are flapping close together, improving performance. We intend to design a hovering Flapping Micro Aerial Vehicle (FMAV) which makes use of WWI. We investigate the effects of flexibility, kinematic motions, and two- to six-wing flapping configurations on the FMAV through numerical simulations. Results show that a rigid spanwise and flexible chordwise wing produces the highest lift with minimum power. The smoothly varying sinusoidal motion, which is visually similar to the CFM, produces similar lift in comparison to the CFM, while having lower peak power requirement. Lastly, lift produced by each wing of the two-, four-, six-wing configurations is approximately equal. Hence more wings generate higher total lift force, but at the expense of higher drag and power requirement. These results will be beneficial in the understanding of the underlying aerodynamics of WWI, and in improving the performance of our FMAV.
文摘Hovering ability is one of the most desired features in Flapping-Wing Micro Air Vehicles (FW-MAVs). This paper presents a hybrid design of flapping wing and fixed wing, which combines two flapping wings and two fixed wings to take advantage of the double wing clap-and-fling effect for high thrust production, and utilizes the fixed wings as the stabilizing surfaces for inherently stable hovering flight. Force measurement shows that the effect of wing clap-and-fling significantly enhances the cycle-averaged vertical thrust up to 44.82% at 12.4 Hz. The effect of ventral wing clap-and-fling due to presence of fixed wings produces about 11% increase of thrust-to-power ratio, and the insect-inspired FW-MAV can produce enough cycle-averaged vertical thrust of 14.76 g for lift-offat 10 Hz, and 24 g at maximum frequency of 12.4 Hz. Power measurement indicates that the power consumed for aerodynamic forces and wing inertia, and power loss due to gearbox friction and mechanism inertia was about 80% and 20% of the total input power, respectively. The proposed insect-inspired FW-MAV could endure three-minute flight, and demonstrate a good flight performance in terms of vertical take-off, hovering, and control with an onboard 3.7 V-70 mAh LiPo battery and control system.
基金National Natural Science Foundation of China(NSFC,No.11672022 and No.11902017).
文摘Recently,a novel concept of flapping Micro-Air-Vehicles(FMAVs)with four wings has been proposed,which potentially utilizes the clap-and-fling effect for lift enhancement and agile maneuvers through an adjustment of wing kinematics.However,the application of the clap-and-fling effect in the four-winged FMAVs is underexplored and the dynamic stability is still unclear.In this paper,aerodynamics and flight dynamic stability of the four-winged FMAVs are studied experimentally and numerically.Results show that the clap-and-fling effect is observed when the flapping frequency is above 18 Hz.Due to the clap-and-fling effect,the lift generation and aerodynamic efficiency are both improved,which is mainly attributed to the fling phase.Further studies show that the clap-and-fling effect becomes weaker as the wing root spacing increases and is almost absent at a wing root spacing of 1.73 chord length.In addition,a wing with an aspect ratio of 3 can increase both lift generation and efficiency due to the clap-and-fling effect.Finally,according to the dynamic stability analysis of the four-winged FMAV,the divergence speed of the lateral oscillation mode is about 4 times faster than that of the longitudinal oscillation mode.Our results can provide guidance on the design and control of four-winged FMAVs.