The chloroplast is surrounded by a double-membrane envelope at which proteins, ions, and numerous metabolites including nucleotides, amino acids, fatty acids, and carbohydrates are exchanged between the two aqueous ph...The chloroplast is surrounded by a double-membrane envelope at which proteins, ions, and numerous metabolites including nucleotides, amino acids, fatty acids, and carbohydrates are exchanged between the two aqueous phases, the cytoplasm and the chloroplast stroma. The chloroplast envelope is also the location where the biosynthesis and accumulation of various lipids take place. By contrast to the inner membrane, which contains a number of specific transporters and acts as the permeability barrier, the chloroplast outer membrane has often been considered a passive compartment derived from the phagosomal membrane. However, the presence of galactoglycerolipids and β-barrel membrane proteins support the common origin of the outer membranes of the chloroplast envelope and extant cyanobacteria. Furthermore, recent progress in the field underlines that the chloroplast outer envelope plays important roles not only for translocation of various molecules, but also for regulation of metabolic activities and signaling processes. The chloroplast outer envelope membrane offers various interesting and challenging questions that are relevant to the understanding of organelle biogenesis, plant growth and development, and also membrane biology in general.展开更多
Most of the mitochondrial and chloroplastic proteins are synthesized in the cytosol as precursor proteins carrying an N-terminal targeting peptide (TP) directing them specifically to a correct organelle. However, th...Most of the mitochondrial and chloroplastic proteins are synthesized in the cytosol as precursor proteins carrying an N-terminal targeting peptide (TP) directing them specifically to a correct organelle. However, there is a group of proteins that are dually targeted to mitochondria and chloroplasts using an ambiguous N-terminal dual targeting peptide (dTP). Here, we have investigated pattern properties of import determinants of organelle-specific TPs and dTPs combining mathematical multivariate data analysis (MVDA) with in vitro organellar import studies. We have used large datasets of mitochondrial and chloroplastic proteins found in organellar proteomes as well as manually selected data sets of experimentally confirmed organelle-specific TPs and dTPs from Arabidopsis thaliana. Two classes of organelle-specific TPs could be distinguished by MVDA and potential patterns or periodicity in the amino acid sequence contributing to the separation were revealed, dTPs were found to have intermediate sequence features between the organelle-specific TPs. Interestingly, introducing positively charged residues to the dTPs showed clustering towards the mitochondrial TPs in silico and resulted in inhibition of chloroplast, but not mitochondrial import in in vitro organellar import studies. These findings suggest that positive charges in the N-terminal region of TPs may function as an 'avoidance signal' for the chloroplast import.展开更多
Protein import into chloroplasts has been a focus of research for several decades. The first publications dealing with this fascinating topic appeared in the 1970s. From the initial realization that many plastid prote...Protein import into chloroplasts has been a focus of research for several decades. The first publications dealing with this fascinating topic appeared in the 1970s. From the initial realization that many plastid proteins are being encoded for in the nucleus and require transport into their target organelle to the identification of import components in the cytosol, chloroplast envelopes, and stroma, as well as elucidation of some mechanistic details, more fascinating aspects are still being unraveled. With this overview, we present a survey of the beginnings of chloroplast protein import research, the first steps on this winding road, and end with a glimpse into the future.展开更多
Successful import of hundreds of nucleus-encoded proteins is essential for chloroplast biogenesis. The import of cytosolic precursor proteins relies on the Toc- (translocon at the outer chloroplast membrane) and Ti...Successful import of hundreds of nucleus-encoded proteins is essential for chloroplast biogenesis. The import of cytosolic precursor proteins relies on the Toc- (translocon at the outer chloroplast membrane) and Tic- (translocon at the inner chloroplast membrane) complexes. In Arabidopsis thaliana, precursor recognition is mainly mediated by outer membrane receptors belonging to two gene families: Toc34/33 and Toc159/132/120/90. The role in import and precursor selectivity of these receptors has been intensively studied, but the function of Toc90 still remains unclear. Here, we report the ability of Toc90 to support the import of Toc159 client proteins. We show that the overexpression of Toc90 partially complements the albino knockout of Toc159 and restores photoautotrophic growth. Several lines of evidence including proteome profiling demonstrate the import and accumulation of proteins essential for chloroplast biogenesis and functionality.展开更多
文摘The chloroplast is surrounded by a double-membrane envelope at which proteins, ions, and numerous metabolites including nucleotides, amino acids, fatty acids, and carbohydrates are exchanged between the two aqueous phases, the cytoplasm and the chloroplast stroma. The chloroplast envelope is also the location where the biosynthesis and accumulation of various lipids take place. By contrast to the inner membrane, which contains a number of specific transporters and acts as the permeability barrier, the chloroplast outer membrane has often been considered a passive compartment derived from the phagosomal membrane. However, the presence of galactoglycerolipids and β-barrel membrane proteins support the common origin of the outer membranes of the chloroplast envelope and extant cyanobacteria. Furthermore, recent progress in the field underlines that the chloroplast outer envelope plays important roles not only for translocation of various molecules, but also for regulation of metabolic activities and signaling processes. The chloroplast outer envelope membrane offers various interesting and challenging questions that are relevant to the understanding of organelle biogenesis, plant growth and development, and also membrane biology in general.
文摘Most of the mitochondrial and chloroplastic proteins are synthesized in the cytosol as precursor proteins carrying an N-terminal targeting peptide (TP) directing them specifically to a correct organelle. However, there is a group of proteins that are dually targeted to mitochondria and chloroplasts using an ambiguous N-terminal dual targeting peptide (dTP). Here, we have investigated pattern properties of import determinants of organelle-specific TPs and dTPs combining mathematical multivariate data analysis (MVDA) with in vitro organellar import studies. We have used large datasets of mitochondrial and chloroplastic proteins found in organellar proteomes as well as manually selected data sets of experimentally confirmed organelle-specific TPs and dTPs from Arabidopsis thaliana. Two classes of organelle-specific TPs could be distinguished by MVDA and potential patterns or periodicity in the amino acid sequence contributing to the separation were revealed, dTPs were found to have intermediate sequence features between the organelle-specific TPs. Interestingly, introducing positively charged residues to the dTPs showed clustering towards the mitochondrial TPs in silico and resulted in inhibition of chloroplast, but not mitochondrial import in in vitro organellar import studies. These findings suggest that positive charges in the N-terminal region of TPs may function as an 'avoidance signal' for the chloroplast import.
文摘Protein import into chloroplasts has been a focus of research for several decades. The first publications dealing with this fascinating topic appeared in the 1970s. From the initial realization that many plastid proteins are being encoded for in the nucleus and require transport into their target organelle to the identification of import components in the cytosol, chloroplast envelopes, and stroma, as well as elucidation of some mechanistic details, more fascinating aspects are still being unraveled. With this overview, we present a survey of the beginnings of chloroplast protein import research, the first steps on this winding road, and end with a glimpse into the future.
文摘Successful import of hundreds of nucleus-encoded proteins is essential for chloroplast biogenesis. The import of cytosolic precursor proteins relies on the Toc- (translocon at the outer chloroplast membrane) and Tic- (translocon at the inner chloroplast membrane) complexes. In Arabidopsis thaliana, precursor recognition is mainly mediated by outer membrane receptors belonging to two gene families: Toc34/33 and Toc159/132/120/90. The role in import and precursor selectivity of these receptors has been intensively studied, but the function of Toc90 still remains unclear. Here, we report the ability of Toc90 to support the import of Toc159 client proteins. We show that the overexpression of Toc90 partially complements the albino knockout of Toc159 and restores photoautotrophic growth. Several lines of evidence including proteome profiling demonstrate the import and accumulation of proteins essential for chloroplast biogenesis and functionality.