Recent progress in bioinorganic chemistry studies of rare earth elements (REE) in animal cells was outlined, and the definition of REE′s biological intelligence as well as their mechanism were also explained. The mig...Recent progress in bioinorganic chemistry studies of rare earth elements (REE) in animal cells was outlined, and the definition of REE′s biological intelligence as well as their mechanism were also explained. The migration of REE from weathering rocks to the environment is accelerated by various anthropogenic activities, which can eventually result in the entrance of REE into animal and human bodies via food chain. REE can be found in body tissues such as brain, blood, muscle as well as bone. Based on their geochemical properties, REE in low dose show their unique biological intelligence by intervening in the process of signal transduction and its regulation, arteriosclerosis and blood clotting prevention, anticancer, and the promotion of cellular defense enzymes′ activities, nucleic acid metabolism enzymes as well as ATPases, etc. The meaning of REE′s biological intelligence refers to physicochemical properties-based capability to choose the targets (e.g., biometals) in biomolecules for the chelation or replacement of REE, and change the structures and functions of biomolecules, and consequently impact or control the biological functions or behaviors in living organisms. The regulation of various cellular processes caused by REE is mainly via antagonism or replacement of essential target biometals like calcium or via chelation of organic molecules, thereby embodying the unparalleled biological intelligence of REE. Additionally, the dosage effect of REE was also discussed from the angles of yin-yang dichotomy, bioavailability, entropy and evolution. In order to make full use of REE′s biological intelligence in the application for medicine, more detailed studies concerning dosage effect of REE and REE bioaccumulation in organisms should be conducted in future research.展开更多
Defects engineering is an efficient strategy to enhance the performance of electrode materials by modulating the local electronic structure but usually requires costly and complicated processing.Here,an electrochemica...Defects engineering is an efficient strategy to enhance the performance of electrode materials by modulating the local electronic structure but usually requires costly and complicated processing.Here,an electrochemical reduction etching method has been developed for controllable tailoring of the cationic defects in iron-based oxides under mild conditions.The optimized defective spinel-type iron nickel oxide exhibits an overpotential as low as 270 mV at 10 mA cm−2 and a Tafel slope of only 33.8 mV dec−1 for the oxygen evolution reaction(OER),outperforming the benchmark RuO2 and pristine oxide.Experiments and theoretical calculations reveal that Fe vacancies can enhance Ni–O covalency,increase the density of active sites,and optimize the surface electronic structure,which promote the water adsorption/activation and moderate oxygen intermediate species adsorption,thus significantly enhancing OER activity.This work provides a promising approach to create cation deficiency and mechanistic insight to understand the vacancy-induced enhancement of oxygen electrocatalysis.展开更多
The Wandashan accretionary complex(AC),consisting of the Raohe and Yuejinshan complexes,is located on the continental margin of Northeast Asia and represents an excellent source of information about Paleo-Pacific subd...The Wandashan accretionary complex(AC),consisting of the Raohe and Yuejinshan complexes,is located on the continental margin of Northeast Asia and represents an excellent source of information about Paleo-Pacific subduction and accretion.However,the protolith nature and tectonic evolution of the Wandashan AC are under debate.This contribution reports new geochronological,geochemical,and Sr-Nd-Pb-Hf isotopic data for ophiolitic rocks from the Wandashan AC.The 169–166 Ma plagioclasites and homogeneous gabbros from the Raohe complex are OIBs while 228–214 Ma homogeneous gabbros are continental VABs.Cumulate gabbros from the Yuejinshan complex formed at 280–278 Ma and~220 Ma and have similar characteristics with E-MORB and N-MORB,respectively.They are BABBs and their primary magma was derived from a source region between EMI and EMII that was affected by continental crustal contamination as well as subduction-zone metasomatism.Combined with previous studies,we suggest that the onset of subduction of the Paleo-Pacific Plate was in the Early Permian.Subsequently,a back-arc basin,whose present suture is on the eastern margin of the Jiamusi Massif,formed and widened during 280–232 Ma,after which the basin closed and BABBs were emplaced to form the Yuejinshan complex during 210–180 Ma.The formation of VABs of the Raohe complex is coincident with the closure of the back-arc basin,and together with the 169–166 Ma OIBs,they constitute a major part of the Raohe complex.The accretionary process was completed during 133–131 Ma.Taken together,the ophiolitic rocks indicating multistage magmatism in the Paleo-Wandashan region recorded the formation-closure process of back-arc basin and the accretionary process of the Wandashan AC,during the westward subduction of the Paleo-Pacific plate.The back-arc basin identified in our study sheds new lights on geodynamic evolution model of subduction and accretion of the Paleo-Pacific Plate on the continental margin of NE Asia.展开更多
Discharge plasmas, recognized as unique platforms for investigating the origins of chemical life, have garnered extensive interest for their potential to simulate prebiotic conditions. This paper embarks on a comprehe...Discharge plasmas, recognized as unique platforms for investigating the origins of chemical life, have garnered extensive interest for their potential to simulate prebiotic conditions. This paper embarks on a comprehensive overview of recent advancements in the plasma-enabled synthesis of life’s building blocks, charting the complex environmental parameters believed to have surrounded life’s inception. This discussion elaborates on the fundamental mechanisms of discharge plasmas and their likely role in fostering conditions necessary for the origin of life on early Earth. We consider a variety of chemical reactions facilitated by plasma, specifically the synthesis of vital organic molecules - amino acids, nucleobases, sugars, and lipids. Further, we delve into the impact of plasmas on prebiotic chemical evolution. We expect this review to open new horizons for future investigations in plasma-related prebiotic chemistry that could offer valuable insights for unraveling the mysteries of life's origin.展开更多
文摘Recent progress in bioinorganic chemistry studies of rare earth elements (REE) in animal cells was outlined, and the definition of REE′s biological intelligence as well as their mechanism were also explained. The migration of REE from weathering rocks to the environment is accelerated by various anthropogenic activities, which can eventually result in the entrance of REE into animal and human bodies via food chain. REE can be found in body tissues such as brain, blood, muscle as well as bone. Based on their geochemical properties, REE in low dose show their unique biological intelligence by intervening in the process of signal transduction and its regulation, arteriosclerosis and blood clotting prevention, anticancer, and the promotion of cellular defense enzymes′ activities, nucleic acid metabolism enzymes as well as ATPases, etc. The meaning of REE′s biological intelligence refers to physicochemical properties-based capability to choose the targets (e.g., biometals) in biomolecules for the chelation or replacement of REE, and change the structures and functions of biomolecules, and consequently impact or control the biological functions or behaviors in living organisms. The regulation of various cellular processes caused by REE is mainly via antagonism or replacement of essential target biometals like calcium or via chelation of organic molecules, thereby embodying the unparalleled biological intelligence of REE. Additionally, the dosage effect of REE was also discussed from the angles of yin-yang dichotomy, bioavailability, entropy and evolution. In order to make full use of REE′s biological intelligence in the application for medicine, more detailed studies concerning dosage effect of REE and REE bioaccumulation in organisms should be conducted in future research.
基金supported by MOST(2017YFA0206700 and 2018YFB1502100)NSFC(21871149,21925503,and 51571125)+2 种基金MOE(B12015)Tianjin Project(18JCZDJC31100)the Fundamental Research Funds for the Central Universities.
文摘Defects engineering is an efficient strategy to enhance the performance of electrode materials by modulating the local electronic structure but usually requires costly and complicated processing.Here,an electrochemical reduction etching method has been developed for controllable tailoring of the cationic defects in iron-based oxides under mild conditions.The optimized defective spinel-type iron nickel oxide exhibits an overpotential as low as 270 mV at 10 mA cm−2 and a Tafel slope of only 33.8 mV dec−1 for the oxygen evolution reaction(OER),outperforming the benchmark RuO2 and pristine oxide.Experiments and theoretical calculations reveal that Fe vacancies can enhance Ni–O covalency,increase the density of active sites,and optimize the surface electronic structure,which promote the water adsorption/activation and moderate oxygen intermediate species adsorption,thus significantly enhancing OER activity.This work provides a promising approach to create cation deficiency and mechanistic insight to understand the vacancy-induced enhancement of oxygen electrocatalysis.
基金This work was financially supported by the National Natural Science Foundation of China(Grants 42002223 and 41790453).
文摘The Wandashan accretionary complex(AC),consisting of the Raohe and Yuejinshan complexes,is located on the continental margin of Northeast Asia and represents an excellent source of information about Paleo-Pacific subduction and accretion.However,the protolith nature and tectonic evolution of the Wandashan AC are under debate.This contribution reports new geochronological,geochemical,and Sr-Nd-Pb-Hf isotopic data for ophiolitic rocks from the Wandashan AC.The 169–166 Ma plagioclasites and homogeneous gabbros from the Raohe complex are OIBs while 228–214 Ma homogeneous gabbros are continental VABs.Cumulate gabbros from the Yuejinshan complex formed at 280–278 Ma and~220 Ma and have similar characteristics with E-MORB and N-MORB,respectively.They are BABBs and their primary magma was derived from a source region between EMI and EMII that was affected by continental crustal contamination as well as subduction-zone metasomatism.Combined with previous studies,we suggest that the onset of subduction of the Paleo-Pacific Plate was in the Early Permian.Subsequently,a back-arc basin,whose present suture is on the eastern margin of the Jiamusi Massif,formed and widened during 280–232 Ma,after which the basin closed and BABBs were emplaced to form the Yuejinshan complex during 210–180 Ma.The formation of VABs of the Raohe complex is coincident with the closure of the back-arc basin,and together with the 169–166 Ma OIBs,they constitute a major part of the Raohe complex.The accretionary process was completed during 133–131 Ma.Taken together,the ophiolitic rocks indicating multistage magmatism in the Paleo-Wandashan region recorded the formation-closure process of back-arc basin and the accretionary process of the Wandashan AC,during the westward subduction of the Paleo-Pacific plate.The back-arc basin identified in our study sheds new lights on geodynamic evolution model of subduction and accretion of the Paleo-Pacific Plate on the continental margin of NE Asia.
基金National Natural Science Foundation of China General Project(52377160)National Natural Science Foundation of China National Young Talents Project(GYKP010)+1 种基金Shaanxi Provincial Natural Science Program(2023-JC-YB-425)Xi′an Jiaotong University Young Top Talents Program.
文摘Discharge plasmas, recognized as unique platforms for investigating the origins of chemical life, have garnered extensive interest for their potential to simulate prebiotic conditions. This paper embarks on a comprehensive overview of recent advancements in the plasma-enabled synthesis of life’s building blocks, charting the complex environmental parameters believed to have surrounded life’s inception. This discussion elaborates on the fundamental mechanisms of discharge plasmas and their likely role in fostering conditions necessary for the origin of life on early Earth. We consider a variety of chemical reactions facilitated by plasma, specifically the synthesis of vital organic molecules - amino acids, nucleobases, sugars, and lipids. Further, we delve into the impact of plasmas on prebiotic chemical evolution. We expect this review to open new horizons for future investigations in plasma-related prebiotic chemistry that could offer valuable insights for unraveling the mysteries of life's origin.