Submicron aerosols (PMt) in Beijing were studied using an Aerodyne aerosol mass spectrometer (AMS) from January to Oc tober 2008. This paper presents seasonal variations of different chemical components (sulfate,...Submicron aerosols (PMt) in Beijing were studied using an Aerodyne aerosol mass spectrometer (AMS) from January to Oc tober 2008. This paper presents seasonal variations of different chemical components (sulfate, nitrate, ammonium, chloride and organics) and size distributions of PM1. Results show that mass concentration of PMI was highest in summer, and lowest in autumn. Organics represented the dominant species in all seasons, accounting for 36%58% of PML, and their concentrations were highest in winter. Concentrations of inorganic components, sulfate, nitrate, and ammonium were highest in summer. Based on principal component analysis, organics were deconvolved and quantified as hydrocarbonlike and oxygenated organ ic aerosol (HOA and OOA, respectively). HOA was highest in winter, accounting for about 70% of organics. However, OOA was highest in summer, and had lower values in autumn and winter. A similar diurnal pattern of various components was ob served, which is higher at nighttime and lower during daytime. HOA increased more dramatically than other species between 17:00 and 21:00 and peaked at noon, which could be related to cooking emissions. OOA, sulfate, nitrate, ammonium and chlo ride varied with the same trend. Their concentrations increased with solar radiation from 9:00 to 13:00, and declined with weakening solar radiation. Size distributions of all species showed apparent peaks in the range 500600 nm. Size distributions of organics were much broader than other species, particularly in autumn and winter. Distributions of sulfate, nitrate and am monium had similar patterns, broadening in winter. Contributions of different species were sizedependent; the finer the parti cle, the greater the contribution of organics. Organics represented more than 60% of particles smaller than 200 nm, contrib uting 50% to PM1 in winter. In spring and summer, HOA was the dominant organic fraction for particles smaller than 200 nm, while OOA contributed more to particles larger than 300 nm. In win展开更多
Size-resolved aerosols were continuously collected by a Nano Sampler for 13 days at an urban site in Beijing during winter 2012 to measure the chemical composition of ambient aerosol particles. Data collected by the N...Size-resolved aerosols were continuously collected by a Nano Sampler for 13 days at an urban site in Beijing during winter 2012 to measure the chemical composition of ambient aerosol particles. Data collected by the Nano Sampler and an ACSM(Aerodyne Aerosol Chemical Speciation Monitor) were compared. Between the data sets,similar trends and strong correlations were observed,demonstrating the validity of the Nano Sampler. PM10 and PM2.5concentrations during the measurement were 150.5 ± 96.0 μg/m3(mean ± standard variation)and 106.9 ± 71.6 μg/m3,respectively. The PM2.5/PM10 ratio was 0.70 ± 0.10,indicating that PM2.5dominated PM10. The aerosol size distributions showed that three size bins of 0.5–1,1–2.5 and 2.5–10 μm contributed 21.8%,23.3% and 26.0% to the total mass concentration(TMC),respectively. OM(organic matter) and SIA(secondary ionic aerosol,mainly SO42-,NO3-and NH4+) were major components of PM2.5. Secondary compounds(SIA and secondary organic carbon) accounted for half of TMC(about 49.8%) in PM2.5,and suggested that secondary aerosols significantly contributed to the serious particulate matter pollution observed in winter. Coal burning,biomass combustion,vehicle emissions and SIA were found to be the main sources of PM2.5. Mass concentrations of water-soluble ions and undetected materials,as well as their fractions in TMC,strikingly increased with deteriorating particle pollution conditions,while OM and EC(elemental carbon) exhibited different variations,with mass concentrations slightly increasing but fractions in TMC decreasing.展开更多
Coal-fired power plants are considered a major source of fine particle emissions in China.Aimed to improve the removal efficiency of fine particles during the limestone-gypsum wet flue gas desulfurization(WFGD) proces...Coal-fired power plants are considered a major source of fine particle emissions in China.Aimed to improve the removal efficiency of fine particles during the limestone-gypsum wet flue gas desulfurization(WFGD) process, a novel technology using chemical agglomeration to abate the emission of fine particles is presented herein. The relationship between fine particle emission and the proportion of fine particles in the desulfurization slurry was studied.Additionally, the influence of chemical agglomeration on fine particle size distribution, both in the flue gas and slurry was experimentally investigated. When chemical agglomeration agents were added to the desulfurization slurry, the fine particle removal performance as well as the effects of the operation parameters was also explored via the simulated experimental facility.The results revealed that the fine particles in both the desulfurization slurry and flue gas were significantly enlarged after the addition of the agglomeration agents. This was more marked in the submicron particles. Thus, the proportion of fine particles(< 10 μm) in the slurry decreased from 31.1% to 22.6%. An increase in the desulfurization slurry temperature and liquid-to-gas ratio aided the reduction in fine particle emission. Moreover, the addition of an agglomeration agent in the slurry did not affect the desulfurization efficiency of the desulfurization tower and even promoted the WFGD process. Thus, the proposed chemical agglomeration technique reduced the fine particle emission of the WFGD system by ~30%, while a desulfurization efficiency >90% was maintained.展开更多
基金supported by National Natural Science Foundation of China (Grant No.41175113)National Basic Research Program of China(Grant No.2011CB403401)+1 种基金China International Science and Technology Cooperation Project(Grant No.2009DFA22800)Chinese Academy of Meteorological Sciences Group Project(Grant No.2010Z002)
文摘Submicron aerosols (PMt) in Beijing were studied using an Aerodyne aerosol mass spectrometer (AMS) from January to Oc tober 2008. This paper presents seasonal variations of different chemical components (sulfate, nitrate, ammonium, chloride and organics) and size distributions of PM1. Results show that mass concentration of PMI was highest in summer, and lowest in autumn. Organics represented the dominant species in all seasons, accounting for 36%58% of PML, and their concentrations were highest in winter. Concentrations of inorganic components, sulfate, nitrate, and ammonium were highest in summer. Based on principal component analysis, organics were deconvolved and quantified as hydrocarbonlike and oxygenated organ ic aerosol (HOA and OOA, respectively). HOA was highest in winter, accounting for about 70% of organics. However, OOA was highest in summer, and had lower values in autumn and winter. A similar diurnal pattern of various components was ob served, which is higher at nighttime and lower during daytime. HOA increased more dramatically than other species between 17:00 and 21:00 and peaked at noon, which could be related to cooking emissions. OOA, sulfate, nitrate, ammonium and chlo ride varied with the same trend. Their concentrations increased with solar radiation from 9:00 to 13:00, and declined with weakening solar radiation. Size distributions of all species showed apparent peaks in the range 500600 nm. Size distributions of organics were much broader than other species, particularly in autumn and winter. Distributions of sulfate, nitrate and am monium had similar patterns, broadening in winter. Contributions of different species were sizedependent; the finer the parti cle, the greater the contribution of organics. Organics represented more than 60% of particles smaller than 200 nm, contrib uting 50% to PM1 in winter. In spring and summer, HOA was the dominant organic fraction for particles smaller than 200 nm, while OOA contributed more to particles larger than 300 nm. In win
基金supported by the National Natural Science Foundation of China (No.41175018)the Ministry of Science and Technology of China (No.2013CB955804)the special fund of State Key Joint Laboratory of Environment Simulation and Pollution Control (Nos.13Z02ESPCP and 13K04ESPCP)
文摘Size-resolved aerosols were continuously collected by a Nano Sampler for 13 days at an urban site in Beijing during winter 2012 to measure the chemical composition of ambient aerosol particles. Data collected by the Nano Sampler and an ACSM(Aerodyne Aerosol Chemical Speciation Monitor) were compared. Between the data sets,similar trends and strong correlations were observed,demonstrating the validity of the Nano Sampler. PM10 and PM2.5concentrations during the measurement were 150.5 ± 96.0 μg/m3(mean ± standard variation)and 106.9 ± 71.6 μg/m3,respectively. The PM2.5/PM10 ratio was 0.70 ± 0.10,indicating that PM2.5dominated PM10. The aerosol size distributions showed that three size bins of 0.5–1,1–2.5 and 2.5–10 μm contributed 21.8%,23.3% and 26.0% to the total mass concentration(TMC),respectively. OM(organic matter) and SIA(secondary ionic aerosol,mainly SO42-,NO3-and NH4+) were major components of PM2.5. Secondary compounds(SIA and secondary organic carbon) accounted for half of TMC(about 49.8%) in PM2.5,and suggested that secondary aerosols significantly contributed to the serious particulate matter pollution observed in winter. Coal burning,biomass combustion,vehicle emissions and SIA were found to be the main sources of PM2.5. Mass concentrations of water-soluble ions and undetected materials,as well as their fractions in TMC,strikingly increased with deteriorating particle pollution conditions,while OM and EC(elemental carbon) exhibited different variations,with mass concentrations slightly increasing but fractions in TMC decreasing.
基金supported by the National Key Research and Development Program of China (No. 2016YFB0600602)
文摘Coal-fired power plants are considered a major source of fine particle emissions in China.Aimed to improve the removal efficiency of fine particles during the limestone-gypsum wet flue gas desulfurization(WFGD) process, a novel technology using chemical agglomeration to abate the emission of fine particles is presented herein. The relationship between fine particle emission and the proportion of fine particles in the desulfurization slurry was studied.Additionally, the influence of chemical agglomeration on fine particle size distribution, both in the flue gas and slurry was experimentally investigated. When chemical agglomeration agents were added to the desulfurization slurry, the fine particle removal performance as well as the effects of the operation parameters was also explored via the simulated experimental facility.The results revealed that the fine particles in both the desulfurization slurry and flue gas were significantly enlarged after the addition of the agglomeration agents. This was more marked in the submicron particles. Thus, the proportion of fine particles(< 10 μm) in the slurry decreased from 31.1% to 22.6%. An increase in the desulfurization slurry temperature and liquid-to-gas ratio aided the reduction in fine particle emission. Moreover, the addition of an agglomeration agent in the slurry did not affect the desulfurization efficiency of the desulfurization tower and even promoted the WFGD process. Thus, the proposed chemical agglomeration technique reduced the fine particle emission of the WFGD system by ~30%, while a desulfurization efficiency >90% was maintained.