在不同焚烧温度条件下采用可控温管式炉焚烧开发区干污泥,对污泥焚烧渣中微观形貌、元素分布、矿物组成以及重金属总量及其形态进行了分析研究。实验结果表明,污泥焚烧渣在焚烧温度为900℃出现明显的结焦现象,在焚烧温度为1 100℃时焚...在不同焚烧温度条件下采用可控温管式炉焚烧开发区干污泥,对污泥焚烧渣中微观形貌、元素分布、矿物组成以及重金属总量及其形态进行了分析研究。实验结果表明,污泥焚烧渣在焚烧温度为900℃出现明显的结焦现象,在焚烧温度为1 100℃时焚烧渣结焦的微观表面致密。XRD分析发现温度的升高使污泥烧渣中出现NaA lS iO4等性质相当稳定的物质。不同重金属在底渣中的总量分布及其形态特征受焚烧温度的影响程度不同。焚烧温度的提高使污泥中重金属的残渣态比例增高,使污泥焚烧对环境的影响减小。展开更多
The chemical forms, spatial distribution and sources of As, Hg, Cd, Pb and Zn in sediments of the Miyun reservoir were studied. The results of sequential extraction demonstrate that most of As, Pb and Zn were bound to...The chemical forms, spatial distribution and sources of As, Hg, Cd, Pb and Zn in sediments of the Miyun reservoir were studied. The results of sequential extraction demonstrate that most of As, Pb and Zn were bound to the residual fraction, Hg was associated with the sulfide fraction while Cd was associated with the carbonate fraction and the residual fraction. On the vertical profiles the concentrations of the heavy metals in total and each fractions mostly decreased with increasing depths in sediments, suggesting that the heavy metals input from the upstream watershed increases yearly. Summation of the residual fraction, the sulfide fraction and the carbonate fraction accounts for 60.03%―85.60% of the total heavy metal contents in the sediments, which represent the geochemical background values of the elements and relate closely to soil erosion. Results of the main factor analysis show that most sediments of the reservoir come from the upstream soil erosion, the point source pollution and domestic waste. Moreover, the microbial activities taking place on the sediment-water interface are also one of the major factors to cause the increasing content of the organic matter fraction and the iron-manganese oxide fraction. Environmental change of the reservoir water could make the removability of the heavy metals increase, leading to the increase of their concentrations in pore water in sediments, and imperiling water quality of the reservoir.展开更多
文摘在不同焚烧温度条件下采用可控温管式炉焚烧开发区干污泥,对污泥焚烧渣中微观形貌、元素分布、矿物组成以及重金属总量及其形态进行了分析研究。实验结果表明,污泥焚烧渣在焚烧温度为900℃出现明显的结焦现象,在焚烧温度为1 100℃时焚烧渣结焦的微观表面致密。XRD分析发现温度的升高使污泥烧渣中出现NaA lS iO4等性质相当稳定的物质。不同重金属在底渣中的总量分布及其形态特征受焚烧温度的影响程度不同。焚烧温度的提高使污泥中重金属的残渣态比例增高,使污泥焚烧对环境的影响减小。
文摘The chemical forms, spatial distribution and sources of As, Hg, Cd, Pb and Zn in sediments of the Miyun reservoir were studied. The results of sequential extraction demonstrate that most of As, Pb and Zn were bound to the residual fraction, Hg was associated with the sulfide fraction while Cd was associated with the carbonate fraction and the residual fraction. On the vertical profiles the concentrations of the heavy metals in total and each fractions mostly decreased with increasing depths in sediments, suggesting that the heavy metals input from the upstream watershed increases yearly. Summation of the residual fraction, the sulfide fraction and the carbonate fraction accounts for 60.03%―85.60% of the total heavy metal contents in the sediments, which represent the geochemical background values of the elements and relate closely to soil erosion. Results of the main factor analysis show that most sediments of the reservoir come from the upstream soil erosion, the point source pollution and domestic waste. Moreover, the microbial activities taking place on the sediment-water interface are also one of the major factors to cause the increasing content of the organic matter fraction and the iron-manganese oxide fraction. Environmental change of the reservoir water could make the removability of the heavy metals increase, leading to the increase of their concentrations in pore water in sediments, and imperiling water quality of the reservoir.