Biological nitrogen(N)fixation(BNF)driven by diazotrophs is an important pathway for N input in agricultural ecosystems.However,free-living BNF and its associated diazotrophic communities under different fertilization...Biological nitrogen(N)fixation(BNF)driven by diazotrophs is an important pathway for N input in agricultural ecosystems.However,free-living BNF and its associated diazotrophic communities under different fertilization practices in acidic soils are poorly studied.Here,we conducted a long-term(29 years)fertilization experiment to explore how fertilization affected free-living BNF via changing biotic and abiotic variables.The fertilization treatments included an unfertilized control(CK),chemical N,phosphorus(P),and potassium(K)fertilizers(NPK),NPK plus lime(NPKL),NPK plus straw(NPKS),NPK plus straw and lime(NPKSL),and NPK plus manure(NPKM).Compared with CK(1.51 nmol C_(2)H_(2)g^(-1)d^(-1)),BNF rate was significantly(P<0.05)higher in NPKM(1.99 nmol C_(2)H_(2)g^(-1)d^(-1))but lower in NPK(0.55 nmol C_(2)H_(2)g^(-1)d^(-1)),NPKL(0.61 nmol C_(2)H_(2)g^(-1)d^(-1)),and NPKS(0.69nmol C_(2)H_(2)g^(-1)d^(-1)).Similarly,chemical fertilization treatments without manure reduced the gene abundance(0.71×10^(8)-1.18×10^(8)copies g^(-1))andα-diversity(Shannon index,1.11-2.43)of diazotrophic communities,whereas the treatment with manure had a positive effect on diazotrophic abundance(3.23×10^(8)copies g^(-1))and Shannon index(3.36).Non-parametric multivariate analysis of variance(PERMANOVA)suggested that manure application(R^(2)=0.212,P=0.001)had a stronger influence on diazotrophic community composition than the addition of lime(R^(2)=0.115,P=0.019)or straw(R^(2)=0.064,P=0.161).Random forest modeling revealed that BNF rates can be significantly(P<0.05)explained by soil pH(9.9%),diazotrophic community attributes(composition,8.5%;Chao 1 index,8.1%;abundance,6.0%;Shannon index,5.7%),and soil total carbon(5.1%).Partial least squares path modeling(PLS-PM)suggested that the diazotrophic community attributes and soil properties mainly provided direct and indirect contributions to the variations in BNF rates,respectively.The dominant genera,Pelomonas,Azospirillum,and Dechloromonas,were positively associated with BNF rates,with their mem展开更多
Lithium-sulfur batteries(LSBs)are promising as the next generation energy storage options.However,their wide applications have been technically challenged by the diffusion losses of polysulfides and polysulfide shuttl...Lithium-sulfur batteries(LSBs)are promising as the next generation energy storage options.However,their wide applications have been technically challenged by the diffusion losses of polysulfides and polysulfide shuttle effect.In this work,the small organic molecules of 2,5-dichloropyrazine(2,5-DCP)were combined with Co-doped carbon(CoA NAC)flakes to achieve the synergic effect of the covalent and chemical sulfur fixation,so as that the immobilization-conversion of polysulfides in LSBs was greatly enhanced.More specifically,the nucleophilic substitution of the 2,5-DCP additive in the electrolyte with polysulfides formed the CAS bonds.Through the further covalent N-Li bonds between the N atoms in 2,5-DCP and polysulfides,sulfur fixation was achieved in the form of solid organosulfur.Meanwhile,the CoA NAC flakes served as the sulfur cathode to chemically anchor the polysulfides.The interaction mechanism between CoA NAC/2,5-DCP and polysulfides was explored by the density functional theory(DFT)calculations and in-situ infrared spectroscopy.The results showed that the optimal“with 2,5-DCP”sample-assembled LSB exhibited an initial discharge specific capacity of 1244 mA h g^(-1)at 0.2C,and a capacity decay rate of 0.053%per cycle was displayed after 800 cycles at 1C.The good cycling stability with a high sulfur-loaded electrode sample suggested that the synergic effect of covalent/chemical sulfur fixation enabled the enhancement of polysulfides immobilization-conversion in LSBs.展开更多
The changes in relative crystalline, chemical composition and internal structure of compressed Chinese fir wood after different heating fixations were found strictly related to fixation conditions. The compressed wood...The changes in relative crystalline, chemical composition and internal structure of compressed Chinese fir wood after different heating fixations were found strictly related to fixation conditions. The compressed wood powders were fixed either by heating at different temperatures all resulting in a 10% recovery, or by incubating at 180 °C for different periods with subsequent recovery levels. Both X-ray diffraction and infrared absorption of those samples have been measured. Relative crystalline increases at early stage of heating fixation, and then decreased gradually. Hemicellulose and lignin decomposition were induced by the fixation process, especially at 180 °C, and lignin was degraded actively. Furthermore, absorbed water was lost after heating, but cellulose did not change markedly. Although different fixation pathways can result in the same recovery level, the major chemical reactions un- derlying them vary, which is consistent with the difference of fixation mechanisms.展开更多
The effects of 4 passivators, zeolite, lime, red mud and peanut shell biochar, on the fixation of Cd, Pb, Cu and Zn in acidic multi-metal contaminated soils were studied by passivator culture experiment in order to sc...The effects of 4 passivators, zeolite, lime, red mud and peanut shell biochar, on the fixation of Cd, Pb, Cu and Zn in acidic multi-metal contaminated soils were studied by passivator culture experiment in order to screen out the passivator with better fixation effects. The results showed that the soil pH values of zeolite, lime, red mud and peanut shell biochar increased significantly by 0.511.02, 0.821.29, 0.720.89 and 0.300.35 respectively. The effects of 4 passivators on the fixation of Cd and Zn in soil are lime>red mud>zeolite>peanut shell biochar. The order of effects on the fixation of Pb is red mud>lime>zeolite>peanut shell biochar. The order of the fixation effects of Cu is red mud>lime>peanut shell carbon>zeolite. The contents of Cd, Pb, Cu and Zn in the extractable state of CaCl2 decreased with the increase in the dosage of 4 passivators. Lime and red mud showed good fixation effects on Cd, Pb, Cu and Zn. The contents of Cd, Pb, Cu and Zn in the extractable state of CaCl2 at the low dosage(2.5 g/kg) of lime and red mud decreased by 41%, 84%, 76% and 83% respectively. Soil pH value was negatively correlated with CaCl2-Cd, Pb, Cu and Zn(P<0.01). Lime and red mud had significant fixation effects on Cd, Pb, Cu and Zn in acidic multi-metal contaminated soils at low application dosages.展开更多
The leaching concentrations of different metals in stainless steel pickling residue(SSPR)were determined and the toxic metals were treated using Na2 S·xH2 O,FeSO4·6 H2 O,and phosphoric acid.A modified Europe...The leaching concentrations of different metals in stainless steel pickling residue(SSPR)were determined and the toxic metals were treated using Na2 S·xH2 O,FeSO4·6 H2 O,and phosphoric acid.A modified European Community Bureau of Reference(BCR)sequential extraction was used to identify the speciation of the concerned metals.Results showed that SSPR contains a large amount of Ca(58.41%),Fe(29.44%),Cr(3.83%),Ni(2.94%),Mn(2.82%)and some of Al,Cu,Mg,Zn.Among them,Cr and Ni were the most toxic metals in SSPR,thus the raw SSPR falls into hazardous waste category due to the leaching amount of Cr.In addition,the leached Cr was identified as Cr6+(MgCr04)in the waste.BCR test revealed that risk assessment code(RAC)of Cr and Ni were 33.29%and 61.7%,indicating they posed"high"and"very high"risk to the environment,respectively.After fixing by Na2 S·xH2 O and FeSO4·6 H2 O,the leaching concentrations of Cr and Ni were less than 1.5 and 0.5 mg/L,respectively.After fixing by Na2 S·xH2 O and FeSO4·6 H2 O the tre ated SSPR can be safely reused as roadbed materials,concrete and cement aggregates.This study provides a useful implication in treatment and beneficial reuse of heavy metal-containing hazardous wastes.展开更多
基金supported by the National Key Plan for Research and Development of China(No.2022YFD1900602)the National Natural Science Foundation of China(Nos.42020104004,52022028,51779077,and 41501328)。
文摘Biological nitrogen(N)fixation(BNF)driven by diazotrophs is an important pathway for N input in agricultural ecosystems.However,free-living BNF and its associated diazotrophic communities under different fertilization practices in acidic soils are poorly studied.Here,we conducted a long-term(29 years)fertilization experiment to explore how fertilization affected free-living BNF via changing biotic and abiotic variables.The fertilization treatments included an unfertilized control(CK),chemical N,phosphorus(P),and potassium(K)fertilizers(NPK),NPK plus lime(NPKL),NPK plus straw(NPKS),NPK plus straw and lime(NPKSL),and NPK plus manure(NPKM).Compared with CK(1.51 nmol C_(2)H_(2)g^(-1)d^(-1)),BNF rate was significantly(P<0.05)higher in NPKM(1.99 nmol C_(2)H_(2)g^(-1)d^(-1))but lower in NPK(0.55 nmol C_(2)H_(2)g^(-1)d^(-1)),NPKL(0.61 nmol C_(2)H_(2)g^(-1)d^(-1)),and NPKS(0.69nmol C_(2)H_(2)g^(-1)d^(-1)).Similarly,chemical fertilization treatments without manure reduced the gene abundance(0.71×10^(8)-1.18×10^(8)copies g^(-1))andα-diversity(Shannon index,1.11-2.43)of diazotrophic communities,whereas the treatment with manure had a positive effect on diazotrophic abundance(3.23×10^(8)copies g^(-1))and Shannon index(3.36).Non-parametric multivariate analysis of variance(PERMANOVA)suggested that manure application(R^(2)=0.212,P=0.001)had a stronger influence on diazotrophic community composition than the addition of lime(R^(2)=0.115,P=0.019)or straw(R^(2)=0.064,P=0.161).Random forest modeling revealed that BNF rates can be significantly(P<0.05)explained by soil pH(9.9%),diazotrophic community attributes(composition,8.5%;Chao 1 index,8.1%;abundance,6.0%;Shannon index,5.7%),and soil total carbon(5.1%).Partial least squares path modeling(PLS-PM)suggested that the diazotrophic community attributes and soil properties mainly provided direct and indirect contributions to the variations in BNF rates,respectively.The dominant genera,Pelomonas,Azospirillum,and Dechloromonas,were positively associated with BNF rates,with their mem
基金the financially supports from the National Natural Science Foundation of China(51963004)the Natural Science Foundation of Shandong Province of China(ZR2020MB024)。
文摘Lithium-sulfur batteries(LSBs)are promising as the next generation energy storage options.However,their wide applications have been technically challenged by the diffusion losses of polysulfides and polysulfide shuttle effect.In this work,the small organic molecules of 2,5-dichloropyrazine(2,5-DCP)were combined with Co-doped carbon(CoA NAC)flakes to achieve the synergic effect of the covalent and chemical sulfur fixation,so as that the immobilization-conversion of polysulfides in LSBs was greatly enhanced.More specifically,the nucleophilic substitution of the 2,5-DCP additive in the electrolyte with polysulfides formed the CAS bonds.Through the further covalent N-Li bonds between the N atoms in 2,5-DCP and polysulfides,sulfur fixation was achieved in the form of solid organosulfur.Meanwhile,the CoA NAC flakes served as the sulfur cathode to chemically anchor the polysulfides.The interaction mechanism between CoA NAC/2,5-DCP and polysulfides was explored by the density functional theory(DFT)calculations and in-situ infrared spectroscopy.The results showed that the optimal“with 2,5-DCP”sample-assembled LSB exhibited an initial discharge specific capacity of 1244 mA h g^(-1)at 0.2C,and a capacity decay rate of 0.053%per cycle was displayed after 800 cycles at 1C.The good cycling stability with a high sulfur-loaded electrode sample suggested that the synergic effect of covalent/chemical sulfur fixation enabled the enhancement of polysulfides immobilization-conversion in LSBs.
基金the National Natural Science Foundation of China (Grant No.30070606) and Association of International Education of Japan
文摘The changes in relative crystalline, chemical composition and internal structure of compressed Chinese fir wood after different heating fixations were found strictly related to fixation conditions. The compressed wood powders were fixed either by heating at different temperatures all resulting in a 10% recovery, or by incubating at 180 °C for different periods with subsequent recovery levels. Both X-ray diffraction and infrared absorption of those samples have been measured. Relative crystalline increases at early stage of heating fixation, and then decreased gradually. Hemicellulose and lignin decomposition were induced by the fixation process, especially at 180 °C, and lignin was degraded actively. Furthermore, absorbed water was lost after heating, but cellulose did not change markedly. Although different fixation pathways can result in the same recovery level, the major chemical reactions un- derlying them vary, which is consistent with the difference of fixation mechanisms.
基金Supported by Special Fund for Scientific Research of the Ministry of Agriculture and Finance(Official Letter No.[2016]6 of the Ministry of Agriculture and Finance)National Science and Technology Support Program(2015BAD05B02)+1 种基金Natural Science Foundation of Hunan(2015JJ2081)Postdoctoral Sustentation Fund(2014M562110)~~
文摘The effects of 4 passivators, zeolite, lime, red mud and peanut shell biochar, on the fixation of Cd, Pb, Cu and Zn in acidic multi-metal contaminated soils were studied by passivator culture experiment in order to screen out the passivator with better fixation effects. The results showed that the soil pH values of zeolite, lime, red mud and peanut shell biochar increased significantly by 0.511.02, 0.821.29, 0.720.89 and 0.300.35 respectively. The effects of 4 passivators on the fixation of Cd and Zn in soil are lime>red mud>zeolite>peanut shell biochar. The order of effects on the fixation of Pb is red mud>lime>zeolite>peanut shell biochar. The order of the fixation effects of Cu is red mud>lime>peanut shell carbon>zeolite. The contents of Cd, Pb, Cu and Zn in the extractable state of CaCl2 decreased with the increase in the dosage of 4 passivators. Lime and red mud showed good fixation effects on Cd, Pb, Cu and Zn. The contents of Cd, Pb, Cu and Zn in the extractable state of CaCl2 at the low dosage(2.5 g/kg) of lime and red mud decreased by 41%, 84%, 76% and 83% respectively. Soil pH value was negatively correlated with CaCl2-Cd, Pb, Cu and Zn(P<0.01). Lime and red mud had significant fixation effects on Cd, Pb, Cu and Zn in acidic multi-metal contaminated soils at low application dosages.
基金supported by Tsinghua University Graduate School in Shen Zhen,China and Jackson State University,USA through a collaborative effort
文摘The leaching concentrations of different metals in stainless steel pickling residue(SSPR)were determined and the toxic metals were treated using Na2 S·xH2 O,FeSO4·6 H2 O,and phosphoric acid.A modified European Community Bureau of Reference(BCR)sequential extraction was used to identify the speciation of the concerned metals.Results showed that SSPR contains a large amount of Ca(58.41%),Fe(29.44%),Cr(3.83%),Ni(2.94%),Mn(2.82%)and some of Al,Cu,Mg,Zn.Among them,Cr and Ni were the most toxic metals in SSPR,thus the raw SSPR falls into hazardous waste category due to the leaching amount of Cr.In addition,the leached Cr was identified as Cr6+(MgCr04)in the waste.BCR test revealed that risk assessment code(RAC)of Cr and Ni were 33.29%and 61.7%,indicating they posed"high"and"very high"risk to the environment,respectively.After fixing by Na2 S·xH2 O and FeSO4·6 H2 O,the leaching concentrations of Cr and Ni were less than 1.5 and 0.5 mg/L,respectively.After fixing by Na2 S·xH2 O and FeSO4·6 H2 O the tre ated SSPR can be safely reused as roadbed materials,concrete and cement aggregates.This study provides a useful implication in treatment and beneficial reuse of heavy metal-containing hazardous wastes.