A novel magnetic chelating adsorbent (CPMS) with iminodiacetate functionality was prepared by polymerization of glycidyl methacrylate-iminodiacetic acid (GMA-IDA) monomer with N, N-methylenebisacrylamide as crossl...A novel magnetic chelating adsorbent (CPMS) with iminodiacetate functionality was prepared by polymerization of glycidyl methacrylate-iminodiacetic acid (GMA-IDA) monomer with N, N-methylenebisacrylamide as crosslinker in the presence of monodisperse magnetic silica microspheres (MS). CPMS was characterized by IR, SEM, VSM and TGA. The experimental results revealed that MS was embedded in the gel polymer, but the morphology of CPMS was irregular. The saturation magnetization for CPMS was found to be 28.4 emu/g, and the percentage of GMA-IDA polymer grafted on MS was about 46.5%. CPMS were shown to be efficient for the removal of Pb(II) ions at pH 3.0 - 6.0, and the adsorption data obeyed the Langmuir equation with a maximum adsorption capacity of 54.4 mg?g?1 at pH 5.0. Moreover, the adsorption rate of CPMS was fast and it took about 5 minutes to achieve adsorption equilibrium in aqueous solution of lower lead ions concentration.展开更多
文摘A novel magnetic chelating adsorbent (CPMS) with iminodiacetate functionality was prepared by polymerization of glycidyl methacrylate-iminodiacetic acid (GMA-IDA) monomer with N, N-methylenebisacrylamide as crosslinker in the presence of monodisperse magnetic silica microspheres (MS). CPMS was characterized by IR, SEM, VSM and TGA. The experimental results revealed that MS was embedded in the gel polymer, but the morphology of CPMS was irregular. The saturation magnetization for CPMS was found to be 28.4 emu/g, and the percentage of GMA-IDA polymer grafted on MS was about 46.5%. CPMS were shown to be efficient for the removal of Pb(II) ions at pH 3.0 - 6.0, and the adsorption data obeyed the Langmuir equation with a maximum adsorption capacity of 54.4 mg?g?1 at pH 5.0. Moreover, the adsorption rate of CPMS was fast and it took about 5 minutes to achieve adsorption equilibrium in aqueous solution of lower lead ions concentration.