Microgrid as an important part of smart grid comprises distributed generators(DGs),adjustable loads,energy storage systems(ESSs)and control units.It can be operated either connected with the external system or islande...Microgrid as an important part of smart grid comprises distributed generators(DGs),adjustable loads,energy storage systems(ESSs)and control units.It can be operated either connected with the external system or islanded with the support of ESSs.While the daily output of DGs strongly depends on the temporal distribution of natural resources such as wind and solar,unregulated electric vehicle(EV)charging demand will deteriorate the unbalance between the daily load curve and generation curve.In this paper,a statistic model is presented to describe daily EV charging/discharging behaviors considering the randomness of the initial state of charge(SOC)of EV batteries.The optimization problem is proposed to obtain the economic operation for the microgrid based on this model.In dayahead scheduling,with the estimated power generation and load demand,the optimal charging/discharging scheduling of EVs during 24 h is achieved by serial quadratic programming.With the optimal charging/discharging scheduling of EVs,the daily load curve can better track the generation curve.The network loss in grid-connected operation mode and required ESS capacity in islanded operation mode are both decreased.展开更多
Purpose–This paper aims to optimize the charging schedule for battery electric buses(BEBs)to minimize the charging cost considering the time-ofuse electricity price.Design/methodology/approach–The BEBs charging sche...Purpose–This paper aims to optimize the charging schedule for battery electric buses(BEBs)to minimize the charging cost considering the time-ofuse electricity price.Design/methodology/approach–The BEBs charging schedule optimization problem is formulated as a mixed-integer linear programming model.The objective is to minimize the total charging cost of the BEB fleet.The charge decision of each BEB at the end of each trip is to be determined.Two types of constraints are adopted to ensure that the charging schedule meets the operational requirements of the BEB fleet and that the number of charging piles can meet the demand of the charging schedule.Findings–This paper conducts numerical cases to validate the effect of the proposed model based on the actual timetable and charging data of a bus line.The results show that the total charge cost with the optimized charging schedule is 15.56%lower than the actual total charge cost under given conditions.The results also suggest that increasing the number of charging piles can reduce the charging cost to some extent,which can provide a reference for planning the number of charging piles.Originality/value–Considering time-of-use electricity price in the BEBs charging schedule will not only reduce the operation cost of electric transit but also make the best use of electricity resources.展开更多
Congestion pricing is an important component of urban intelligent transport system.The efficiency,equity and the environmental impacts associated with road pricing schemes are key issues that should be considered befo...Congestion pricing is an important component of urban intelligent transport system.The efficiency,equity and the environmental impacts associated with road pricing schemes are key issues that should be considered before such schemes are implemented.This paper focuses on the cordon-based pricing with distance tolls,where the tolls are determined by a nonlinear function of a vehicles' travel distance within a cordon,termed as toll charge function.The optimal tolls can give rise to:1) higher total social benefits,2) better levels of equity,and 3) reduced environmental impacts(e.g.,less emission).Firstly,a deterministic equilibrium(DUE) model with elastic demand is presented to evaluate any given toll charge function.The distance tolls are non-additive,thus a modified path-based gradient projection algorithm is developed to solve the DUE model.Then,to quantitatively measure the equity level of each toll charge function,the Gini coefficient is adopted to measure the equity level of the flows in the entire transport network based on equilibrium flows.The total emission level is used to reflect the impacts of distance tolls on the environment.With these two indexes/measurements for the efficiency,equity and environmental issues as well as the DUE model,a multi-objective bi-level programming model is then developed to determine optimal distance tolls.The multi-objective model is converted to a single level model using the goal programming.A genetic algorithm(GA) is adopted to determine solutions.Finally,a numerical example is presented to verify the methodology.展开更多
基金The research of this paper was supported by National Natural Science Foundation of China(No.51577032)Natural Science Foundation of Jiangsu Province(No.BK20160679)+1 种基金EPSRC UK-China joint research consortium(EP/F061242/1)Science bridge award(EP/G042594/1).
文摘Microgrid as an important part of smart grid comprises distributed generators(DGs),adjustable loads,energy storage systems(ESSs)and control units.It can be operated either connected with the external system or islanded with the support of ESSs.While the daily output of DGs strongly depends on the temporal distribution of natural resources such as wind and solar,unregulated electric vehicle(EV)charging demand will deteriorate the unbalance between the daily load curve and generation curve.In this paper,a statistic model is presented to describe daily EV charging/discharging behaviors considering the randomness of the initial state of charge(SOC)of EV batteries.The optimization problem is proposed to obtain the economic operation for the microgrid based on this model.In dayahead scheduling,with the estimated power generation and load demand,the optimal charging/discharging scheduling of EVs during 24 h is achieved by serial quadratic programming.With the optimal charging/discharging scheduling of EVs,the daily load curve can better track the generation curve.The network loss in grid-connected operation mode and required ESS capacity in islanded operation mode are both decreased.
基金supported by the National Natural Science Foundation of China(72001007)the China Postdoctoral Science Foundation(2021M700304).
文摘Purpose–This paper aims to optimize the charging schedule for battery electric buses(BEBs)to minimize the charging cost considering the time-ofuse electricity price.Design/methodology/approach–The BEBs charging schedule optimization problem is formulated as a mixed-integer linear programming model.The objective is to minimize the total charging cost of the BEB fleet.The charge decision of each BEB at the end of each trip is to be determined.Two types of constraints are adopted to ensure that the charging schedule meets the operational requirements of the BEB fleet and that the number of charging piles can meet the demand of the charging schedule.Findings–This paper conducts numerical cases to validate the effect of the proposed model based on the actual timetable and charging data of a bus line.The results show that the total charge cost with the optimized charging schedule is 15.56%lower than the actual total charge cost under given conditions.The results also suggest that increasing the number of charging piles can reduce the charging cost to some extent,which can provide a reference for planning the number of charging piles.Originality/value–Considering time-of-use electricity price in the BEBs charging schedule will not only reduce the operation cost of electric transit but also make the best use of electricity resources.
基金Projects (61304198,61374195) supported by the National Natural Science Foundation of ChinaProjects (2013M530159,2014T70351) supported by the China Postdoctoral Science Foundation
文摘Congestion pricing is an important component of urban intelligent transport system.The efficiency,equity and the environmental impacts associated with road pricing schemes are key issues that should be considered before such schemes are implemented.This paper focuses on the cordon-based pricing with distance tolls,where the tolls are determined by a nonlinear function of a vehicles' travel distance within a cordon,termed as toll charge function.The optimal tolls can give rise to:1) higher total social benefits,2) better levels of equity,and 3) reduced environmental impacts(e.g.,less emission).Firstly,a deterministic equilibrium(DUE) model with elastic demand is presented to evaluate any given toll charge function.The distance tolls are non-additive,thus a modified path-based gradient projection algorithm is developed to solve the DUE model.Then,to quantitatively measure the equity level of each toll charge function,the Gini coefficient is adopted to measure the equity level of the flows in the entire transport network based on equilibrium flows.The total emission level is used to reflect the impacts of distance tolls on the environment.With these two indexes/measurements for the efficiency,equity and environmental issues as well as the DUE model,a multi-objective bi-level programming model is then developed to determine optimal distance tolls.The multi-objective model is converted to a single level model using the goal programming.A genetic algorithm(GA) is adopted to determine solutions.Finally,a numerical example is presented to verify the methodology.