直流微网中组网变流器采用虚拟电机控制可改善系统中因功率波动所引起的电能质量问题,但其无法兼顾直流母线电压动态调节的灵活性。针对此问题,以直流微网中蓄电池储能单元的DC-DC变流器为研究对象,基于类虚拟同步发电机控制技术,利用...直流微网中组网变流器采用虚拟电机控制可改善系统中因功率波动所引起的电能质量问题,但其无法兼顾直流母线电压动态调节的灵活性。针对此问题,以直流微网中蓄电池储能单元的DC-DC变流器为研究对象,基于类虚拟同步发电机控制技术,利用直流电压变化率与惯性参数耦合的机理,提出一种能够实现直流电压灵活动态调节的灵活类虚拟同步发电机控制。通过建立小信号模型,基于DC-DC变流器端口响应与根轨迹的分析,揭示了主要参数变化对系统惯性与稳定性的影响规律,并给出相应的整定方法。其次,通过结合蓄电池的双向特性以及系统稳定裕度指标,给出了惯性参数的稳定取值区域,实现合理范围内惯性控制的灵活调节。然后根据荷电状态(state of charge,SOC)对蓄电池提供惯性功率能力的影响,基于SOC对惯性控制中下垂系数的取值进行实时约束。研究结果表明,灵活类虚拟同步发电机控制能给系统提供灵活可调的惯性支撑,使直流电压具有更好的动态特性和稳定性。最后,通过Matlab/Simulink仿真验证了所提控制策略的有效性。展开更多
利用热刺激放电(Thermally Stimulated Discharge,TSD)电流谱、在线电荷TSD、电荷等温衰减测量和衰减全反射(Attenuated Total Reflection,ATR)红外光谱分析,本文系统地研究了经化学表面处理(萃取、氧化及氢氟酸)的聚丙烯(PP)孔洞驻极...利用热刺激放电(Thermally Stimulated Discharge,TSD)电流谱、在线电荷TSD、电荷等温衰减测量和衰减全反射(Attenuated Total Reflection,ATR)红外光谱分析,本文系统地研究了经化学表面处理(萃取、氧化及氢氟酸)的聚丙烯(PP)孔洞驻极体膜的电荷储存稳定性及电荷稳定性提高的原因.结果表明:经适当地氧化和氢氟酸室温处理试样的TSD电流谱中在温位约为184℃处出现原膜所没有的非常强的新峰,电荷热稳定性得到显著的提高,这一电荷热稳定性通过高温充电工艺得到进一步地改善;适当延长室温下氢氟酸处理的时间或延长氧化时间,都会使处理膜的电荷稳定性得到提高.理论分析表明在线电荷TSD测量法可给出线性升温过程中电荷重心及驻极体电荷量变化的综合信息,结合TSD电流谱和初始电荷重心位置的测量,可精确地考察线性升温过程中电荷重心的在线变化.展开更多
Lithium-ion batteries are widely used in electric vehicles and electronics, and their thermal safety receives widespread attention from consumers. In our study, thermal runaway testing was conducted on the thermal sta...Lithium-ion batteries are widely used in electric vehicles and electronics, and their thermal safety receives widespread attention from consumers. In our study, thermal runaway testing was conducted on the thermal stability of commercial lithium-ion batteries, and the internal structure of the battery was analyzed with an in-depth focus on the key factors of the thermal runaway. Through the study of the structure and thermal stability of the cathode, anode, and separator, the results showed that the phase transition reaction of the separator was the key factor affecting the thermal runaway of the battery for the condition of a low state of charge.展开更多
LiCoO_(2) is the preferred cathode material for consumer electronic products due to its high volumetric energy density. However, the unfavorable phase transition and surface oxygen release limits the practical applica...LiCoO_(2) is the preferred cathode material for consumer electronic products due to its high volumetric energy density. However, the unfavorable phase transition and surface oxygen release limits the practical application of LiCoO_(2)at a high-voltage of 4.6 V to achieve a higher energy density demanded by the market. Herein, both bulk and surface structures of LiCoO_(2)are stabilized at 4.6 V through oxygen charge regulation by Gd-gradient doping. The enrichment of highly electropositive Gd on LiCoO_(2) surface will increase the effective charge on oxygen and improve the oxygen framework stability against oxygen loss.On the other hand, Gd ions occupy the Co-sites and suppress the unfavorable phase transition and microcrack. The modified LiCoO_(2) exhibits superior cycling stability with capacity retention of 90.1% over 200 cycles at 4.6 V, and also obtains a high capacity of 145.7 m Ah/g at 5 C. This work shows great promise for developing high-voltage LiCoO_(2) at 4.6 V and the strategy could also contribute to optimizing other cathode materials with high voltage and large capacity, such as cobalt-free high-nickel and lithiumrich manganese-based cathode materials.展开更多
文摘直流微网中组网变流器采用虚拟电机控制可改善系统中因功率波动所引起的电能质量问题,但其无法兼顾直流母线电压动态调节的灵活性。针对此问题,以直流微网中蓄电池储能单元的DC-DC变流器为研究对象,基于类虚拟同步发电机控制技术,利用直流电压变化率与惯性参数耦合的机理,提出一种能够实现直流电压灵活动态调节的灵活类虚拟同步发电机控制。通过建立小信号模型,基于DC-DC变流器端口响应与根轨迹的分析,揭示了主要参数变化对系统惯性与稳定性的影响规律,并给出相应的整定方法。其次,通过结合蓄电池的双向特性以及系统稳定裕度指标,给出了惯性参数的稳定取值区域,实现合理范围内惯性控制的灵活调节。然后根据荷电状态(state of charge,SOC)对蓄电池提供惯性功率能力的影响,基于SOC对惯性控制中下垂系数的取值进行实时约束。研究结果表明,灵活类虚拟同步发电机控制能给系统提供灵活可调的惯性支撑,使直流电压具有更好的动态特性和稳定性。最后,通过Matlab/Simulink仿真验证了所提控制策略的有效性。
文摘利用热刺激放电(Thermally Stimulated Discharge,TSD)电流谱、在线电荷TSD、电荷等温衰减测量和衰减全反射(Attenuated Total Reflection,ATR)红外光谱分析,本文系统地研究了经化学表面处理(萃取、氧化及氢氟酸)的聚丙烯(PP)孔洞驻极体膜的电荷储存稳定性及电荷稳定性提高的原因.结果表明:经适当地氧化和氢氟酸室温处理试样的TSD电流谱中在温位约为184℃处出现原膜所没有的非常强的新峰,电荷热稳定性得到显著的提高,这一电荷热稳定性通过高温充电工艺得到进一步地改善;适当延长室温下氢氟酸处理的时间或延长氧化时间,都会使处理膜的电荷稳定性得到提高.理论分析表明在线电荷TSD测量法可给出线性升温过程中电荷重心及驻极体电荷量变化的综合信息,结合TSD电流谱和初始电荷重心位置的测量,可精确地考察线性升温过程中电荷重心的在线变化.
基金financial supports from National Key R&D Program of China (2018YFC1902200)the key technologies R&D program of Tianjin (18YFZCGX00240)key R&D Program of China Automotive Technology and Research Center Co., Ltd. (18200116)。
文摘Lithium-ion batteries are widely used in electric vehicles and electronics, and their thermal safety receives widespread attention from consumers. In our study, thermal runaway testing was conducted on the thermal stability of commercial lithium-ion batteries, and the internal structure of the battery was analyzed with an in-depth focus on the key factors of the thermal runaway. Through the study of the structure and thermal stability of the cathode, anode, and separator, the results showed that the phase transition reaction of the separator was the key factor affecting the thermal runaway of the battery for the condition of a low state of charge.
基金supported by the National Natural Science Foundation of China (52102249, 52172201, 51732005, 51902118)the China Postdoctoral Science Foundation (2019M662609 and 2020T130217)+1 种基金the international postdoctoral exchange fellowship program (PC2021026)the Major Technological Innovation Project of Hubei Province (2019AAA019) for financial support。
文摘LiCoO_(2) is the preferred cathode material for consumer electronic products due to its high volumetric energy density. However, the unfavorable phase transition and surface oxygen release limits the practical application of LiCoO_(2)at a high-voltage of 4.6 V to achieve a higher energy density demanded by the market. Herein, both bulk and surface structures of LiCoO_(2)are stabilized at 4.6 V through oxygen charge regulation by Gd-gradient doping. The enrichment of highly electropositive Gd on LiCoO_(2) surface will increase the effective charge on oxygen and improve the oxygen framework stability against oxygen loss.On the other hand, Gd ions occupy the Co-sites and suppress the unfavorable phase transition and microcrack. The modified LiCoO_(2) exhibits superior cycling stability with capacity retention of 90.1% over 200 cycles at 4.6 V, and also obtains a high capacity of 145.7 m Ah/g at 5 C. This work shows great promise for developing high-voltage LiCoO_(2) at 4.6 V and the strategy could also contribute to optimizing other cathode materials with high voltage and large capacity, such as cobalt-free high-nickel and lithiumrich manganese-based cathode materials.