以126 k V模块化多断口直流真空断路器为研究对象,在连续过渡模型建模中考虑金属蒸气与离子密度的影响,给出中频真空电弧介质恢复动态数学模型;通过对其开断过程的数值仿真,得到断口间鞘层动态变化与介质恢复强度变化关系曲线以及弧后...以126 k V模块化多断口直流真空断路器为研究对象,在连续过渡模型建模中考虑金属蒸气与离子密度的影响,给出中频真空电弧介质恢复动态数学模型;通过对其开断过程的数值仿真,得到断口间鞘层动态变化与介质恢复强度变化关系曲线以及弧后电流、瞬态恢复电压与新阴极表面电场强度分布。采用对比分析方法,研究各断口间瞬态恢复电压分配规律以及弧后介质恢复强度影响因素。研究结果表明:由于线路阻抗产生的瞬态恢复电压等因素使得各断口间开断电压及电弧能量分配不均,某一断口所受电压及电弧能量高于其他断口,金属蒸气初始密度大且弧后电流下降率较大,瞬态恢复电压上升速率更快,鞘层发展速度缓慢,新阴极表面场强较高,易发生重击穿从而导致断路器开断失败。在换流回路中采用较大电容以保证TRV合理分配,进而提高多断口直流真空断路器开断性能。展开更多
The loss of three-dimensional atmospheric electric field(3DAEF)data has a negative impact on thunderstorm detection.This paper proposes a method for thunderstorm point charge path recovery.Based on the relation-ship b...The loss of three-dimensional atmospheric electric field(3DAEF)data has a negative impact on thunderstorm detection.This paper proposes a method for thunderstorm point charge path recovery.Based on the relation-ship between a point charge and 3DAEF,we derive corresponding localization formulae by establishing a point charge localization model.Generally,point charge movement paths are obtained after fitting time series localization results.However,AEF data losses make it difficult to fit and visualize paths.Therefore,using available AEF data without loss as input,we design a hybrid model combining the convolutional neural network(CNN)and bi-directional long short-term memory(BiLSTM)to predict and recover the lost AEF.As paths are not present during sunny weather,we propose an extreme gradient boosting(XGBoost)model combined with a stacked autoencoder(SAE)to further determine the weather conditions of the recovered AEF.Specifically,historical AEF data of known weathers are input into SAE-XGBoost to obtain the distribution of predicted values(PVs).With threshold adjustments to reduce the negative effects of invalid PVs on SAE-XGBoost,PV intervals corresponding to different weathers are acquired.The recovered AEF is then input into the fixed SAE-XGBoost model.Whether paths need to be fitted is determined by the interval to which the output PV belongs.The results confirm that the proposed method can effectively recover point charge paths,with a maximum path deviation of approximately 0.018 km and a determination coefficient of 94.17%.This method provides a valid reference for visual thunderstorm monitoring.展开更多
Using a unipolar pulse with the rise time and the pulse duration in the order of microsecond as the primary pulse, a nanosecond pulse with the repetitive frequency of several kilohertz is generated by a spark gap swit...Using a unipolar pulse with the rise time and the pulse duration in the order of microsecond as the primary pulse, a nanosecond pulse with the repetitive frequency of several kilohertz is generated by a spark gap switch. By varying both the inter-pulse duration and the pulse frequency, the voltage recovery rate of the spark gap switch is investigated at different working conditions such as the gas pressure, the gas composition as well as the bias voltage. The results reveal that either increase in gas pressure or addition of SF6 to the air can increase the voltage recovery rate. The effect of gas composition on the voltage recovery rate is discussed based on the transferring and distribution of the residual space charges. The repetitive nanosecond pulse source is also applied to the generation of large volume, and the discharge currents are measured to investigate the effect of pulse repetition rate on the large volume streamer discharge.展开更多
文摘以126 k V模块化多断口直流真空断路器为研究对象,在连续过渡模型建模中考虑金属蒸气与离子密度的影响,给出中频真空电弧介质恢复动态数学模型;通过对其开断过程的数值仿真,得到断口间鞘层动态变化与介质恢复强度变化关系曲线以及弧后电流、瞬态恢复电压与新阴极表面电场强度分布。采用对比分析方法,研究各断口间瞬态恢复电压分配规律以及弧后介质恢复强度影响因素。研究结果表明:由于线路阻抗产生的瞬态恢复电压等因素使得各断口间开断电压及电弧能量分配不均,某一断口所受电压及电弧能量高于其他断口,金属蒸气初始密度大且弧后电流下降率较大,瞬态恢复电压上升速率更快,鞘层发展速度缓慢,新阴极表面场强较高,易发生重击穿从而导致断路器开断失败。在换流回路中采用较大电容以保证TRV合理分配,进而提高多断口直流真空断路器开断性能。
基金supported by a grant from State Key Laboratory of Resources and Environmental Information System,the National Natural Science Foundation of China,Grant Number 42201053the Program of China Scholarship Council,Grant Number 202209040027the Postgraduate Research&Practice Innovation Program of Jiangsu Province,Grant Number KYCX21_1000,which are highly appreciated by the authors.
文摘The loss of three-dimensional atmospheric electric field(3DAEF)data has a negative impact on thunderstorm detection.This paper proposes a method for thunderstorm point charge path recovery.Based on the relation-ship between a point charge and 3DAEF,we derive corresponding localization formulae by establishing a point charge localization model.Generally,point charge movement paths are obtained after fitting time series localization results.However,AEF data losses make it difficult to fit and visualize paths.Therefore,using available AEF data without loss as input,we design a hybrid model combining the convolutional neural network(CNN)and bi-directional long short-term memory(BiLSTM)to predict and recover the lost AEF.As paths are not present during sunny weather,we propose an extreme gradient boosting(XGBoost)model combined with a stacked autoencoder(SAE)to further determine the weather conditions of the recovered AEF.Specifically,historical AEF data of known weathers are input into SAE-XGBoost to obtain the distribution of predicted values(PVs).With threshold adjustments to reduce the negative effects of invalid PVs on SAE-XGBoost,PV intervals corresponding to different weathers are acquired.The recovered AEF is then input into the fixed SAE-XGBoost model.Whether paths need to be fitted is determined by the interval to which the output PV belongs.The results confirm that the proposed method can effectively recover point charge paths,with a maximum path deviation of approximately 0.018 km and a determination coefficient of 94.17%.This method provides a valid reference for visual thunderstorm monitoring.
基金National Natural Science Foundation of China(No.50477027)
文摘Using a unipolar pulse with the rise time and the pulse duration in the order of microsecond as the primary pulse, a nanosecond pulse with the repetitive frequency of several kilohertz is generated by a spark gap switch. By varying both the inter-pulse duration and the pulse frequency, the voltage recovery rate of the spark gap switch is investigated at different working conditions such as the gas pressure, the gas composition as well as the bias voltage. The results reveal that either increase in gas pressure or addition of SF6 to the air can increase the voltage recovery rate. The effect of gas composition on the voltage recovery rate is discussed based on the transferring and distribution of the residual space charges. The repetitive nanosecond pulse source is also applied to the generation of large volume, and the discharge currents are measured to investigate the effect of pulse repetition rate on the large volume streamer discharge.