The storage of long bunches for long time intervals needs flattened stationary buckets with a large bucket height. The longitudinal motion of the initially mismatched beam has been studied for both the single and dual...The storage of long bunches for long time intervals needs flattened stationary buckets with a large bucket height. The longitudinal motion of the initially mismatched beam has been studied for both the single and dual harmonic RF systems. The RF amplitude is determined to be r.m.s wise matched. The bucket height of the single harmonic system is too small even for shorter bunch with only 20% increased energy spread. The Halo formation and even debunching can be seen after a few synchrotron periods for single particles with large amplitude. In the case of small energy spread for a cooled beam, Coulomb interaction cannot be ignored. The external voltage has to be increased to keep the r.m.s bunch length unchanged. The new voltage ratio R(N) simplifies physics for the emittance-dominated bunches with modest particle number N. For the single harmonic system, substantial amount of debunching occurs without increasing the external voltage, but very little if the RF amplitude is doubled. Results from the ORBIT tracking code are presented for the 1 GeV bunch in the HESR synchrotron, part of the GSI FAIR project.展开更多
The dynamic characteristics of space charge in nanocomposite of low-density polyethylene (LDPE) mixed with inorganic nano- fillers. Different from previous qualitatively theoretical works, we investigated the influenc...The dynamic characteristics of space charge in nanocomposite of low-density polyethylene (LDPE) mixed with inorganic nano- fillers. Different from previous qualitatively theoretical works, we investigated the influence of trap depth, trap volume charge density and injection barrier height on the space charge and the electric field distribution in the nanocomposite under a DC external electric field (100 MV/m) systematically and quantificationally, through numerical simulations based on a bipolar charge transport model. The simulation re- sults showed that, the increase of trap depth would severely distort the balanced electric field distribution with the highest and the lowest electric field of 119 MV/m and 47 MV/m, respectively. It is concluded that the introduction of nanofillers creates more deep traps, which would block space charges by capturing most of them in the vicinity of electrode and hence reduce the local electric field largely. Further theoretical analysis of the simulation indicates that both the high permittivity and the low local electric field of the nanocomposite contri- buted to the increase of injection barrier height, and almost no charge could overcome an injection barrier higher than 1.25 eV. At last, a mechanism of space charge suppression in the LDPE nanocomposite was presented.展开更多
基金Supported by National Natural Science Foundation of China(10075065)
文摘The storage of long bunches for long time intervals needs flattened stationary buckets with a large bucket height. The longitudinal motion of the initially mismatched beam has been studied for both the single and dual harmonic RF systems. The RF amplitude is determined to be r.m.s wise matched. The bucket height of the single harmonic system is too small even for shorter bunch with only 20% increased energy spread. The Halo formation and even debunching can be seen after a few synchrotron periods for single particles with large amplitude. In the case of small energy spread for a cooled beam, Coulomb interaction cannot be ignored. The external voltage has to be increased to keep the r.m.s bunch length unchanged. The new voltage ratio R(N) simplifies physics for the emittance-dominated bunches with modest particle number N. For the single harmonic system, substantial amount of debunching occurs without increasing the external voltage, but very little if the RF amplitude is doubled. Results from the ORBIT tracking code are presented for the 1 GeV bunch in the HESR synchrotron, part of the GSI FAIR project.
基金Project supported by National Basic Research Program of China (973 Program) (2014 CB239501, 2011CB209400), National Natural Science Foundation of China (NSFC 50877040).
文摘The dynamic characteristics of space charge in nanocomposite of low-density polyethylene (LDPE) mixed with inorganic nano- fillers. Different from previous qualitatively theoretical works, we investigated the influence of trap depth, trap volume charge density and injection barrier height on the space charge and the electric field distribution in the nanocomposite under a DC external electric field (100 MV/m) systematically and quantificationally, through numerical simulations based on a bipolar charge transport model. The simulation re- sults showed that, the increase of trap depth would severely distort the balanced electric field distribution with the highest and the lowest electric field of 119 MV/m and 47 MV/m, respectively. It is concluded that the introduction of nanofillers creates more deep traps, which would block space charges by capturing most of them in the vicinity of electrode and hence reduce the local electric field largely. Further theoretical analysis of the simulation indicates that both the high permittivity and the low local electric field of the nanocomposite contri- buted to the increase of injection barrier height, and almost no charge could overcome an injection barrier higher than 1.25 eV. At last, a mechanism of space charge suppression in the LDPE nanocomposite was presented.