Through regulating target genes via the mechanisms of posttranscriptional cleavage or translational repression, plant miRNAs involve diverse biological processes associating with plant growth, development, and abiotic...Through regulating target genes via the mechanisms of posttranscriptional cleavage or translational repression, plant miRNAs involve diverse biological processes associating with plant growth, development, and abiotic stress responses, in this study, we functionally characterized TaMIR1119, a miRNA family member of wheat (Triticum aestivum), in regulating the drought adaptive response of plants. TaMIR1119 putatively targets six genes categorized into the functional classes of transcriptional regulation, RNA and biochemical metabolism, trafficking, and oxidative stress defense. Upon simulated drought stress, the TaMIR1119 transcripts abundance in roots was drastically altered, showing to be upregulated gradually within a 48-h drought regime andthat the drought-induced transcripts were gradually restored along with a 48-h recovery treatment. In contrast, most miRNA target genes displayed reverse expression patterns to TaMIR1119, exhibiting a downregulated expression pattern upon drought and whose reduced transcripts were re-elevated along with a normal recovery treatment. These expression analysis results indicated that TaMIR1119 responds to drought and regulates the target genes mainly through a cleavage mechanism. Under drought stress, the tobacco lines with TaMIR1119 overexpression behaved improved phenotypes,, showing increased plant biomass, photosynthetic parameters, osmolyte accumulation, and enhanced antioxidant enzyme (AE) activities relative to wild type. Three AE genes, NtFeSOD, NtCAT1;3, and NtSOD2,1, encoding superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD) proteins, respectively, showed upregulated expression in TaMIR1119 overexpression lines, suggesting that they are involved in the regulation of AE activities and contribution to the improved cellular reactive oxygen species (ROS) homeostasis in drought-challenged transgenic lines. Our results indicate that TaMIR1119 plays critical roles in regulating plant drought tolerance through transcriptionally regulating展开更多
Wax apple(Syzygium samarangense)has received growing research interest for its high nutritional and medicinal value due to its constituents such as polysaccharide,organic acids,flavonoids,minerals,and other substances...Wax apple(Syzygium samarangense)has received growing research interest for its high nutritional and medicinal value due to its constituents such as polysaccharide,organic acids,flavonoids,minerals,and other substances.In this study,wax apple polysaccharide(WAP)was isolated from this plant and its protective effect against ethyl carbamate(EC)-induced oxidative damage was evaluated in human hepatocytes(L02 cells).Firstly,a series of analyses such as high-performance liquid chromatography(HPLC),high-performance gel permeation chromatography(HPGPC),Fourier transform infrared spectroscopy(FT-IR),gas chromatography/mass spectrometry(GC/MS),and 1H and 13C nuclear magnetic resonance(NMR)were conducted to identify the structure of,in vitro cell experiments were performed to verify the protective effects of WAP against EC-induced cytotoxicity,genotoxicity,and oxidative damage in L02 cells.Our results revealed that WAP is composed of mannose,rhamnose,glucuronic acid,galacturonic acid,glucose,galactose,arabinose,and fucose in a molar ratio of 2.20:3.94:4.45:8.56:8.86:30.82:39.78:1.48.Using a combination of methylation and NMR spectroscopic analysis,the primary structure of WAP was identified as Araf-(1→,Glcp-(1→,→2)-Araf-(1→,→3)-Galp-(1→,→3)-Araf-(1→,and→6)-Galp-(1→.Cell experiments indicated that WAP exhibited significant protective effects on EC-treated L02 cells via suppressing cytotoxicity and genotoxicity,reducing reactive oxygen species(ROS)and O2?-formation,as well as improving mitochondrial membrane potential(MMP)and glutathione(GSH).In a nutshell,WAP has the potential as an important therapeutic agent or supplement for hepatic oxidative damage.Meanwhile,further studies are needed to prove the above effects in vivo at the biological and clinical levels.展开更多
Three novel acidic polysaccharide fractions(OFPP-1,OFPP-2,OFPP-3)with different m olecular weights(803.7,555.1 and 414.5 k Da)were isolated from the peeled Opuntia dillenii Haw.fruits by alkali-extraction,graded alcoh...Three novel acidic polysaccharide fractions(OFPP-1,OFPP-2,OFPP-3)with different m olecular weights(803.7,555.1 and 414.5 k Da)were isolated from the peeled Opuntia dillenii Haw.fruits by alkali-extraction,graded alcohol precipitation and column chromatography.Structural analysis indicated that OFPPs were pectic polysaccharides consisting of rhamnose,arabinose and galactose residues.The backbone of OFPP-1 consisted of a repeating unit→6-α-D-Galp A-(1→2)-α-L-Rhap-(1→with T-α-D-Galp A-(1→6)-α-D-Galp A-(1→4)-α-D-Glcp-(1→,T-β-D-Xylp-(1→6)-α-D-Galp A-(1→4)-α-D-Glcp-(1→or T-α-D-Galp A-(1→3)-α-L-Araf-(1→as the side chains.The backbone of OFPP-2 consisted of a disaccharide repeating unit→2)-α-L-Rhap-(1→4)-β-D-Galp A-(1→with T-β-L-Araf-(1→as the branches substituted at the O-4 position of→2,4)-α-LRhap-(1→.Whereas the backbone of OFPP-3 was→2,4)-α-L-Rhap-(1→2)-α-L-Rhap-(1→3)-β-L-Araf-(1→or→2,4)-α-L-Rhap-(1→2)-α-L-Rhap-(1→4)-β-D-Galp A-(1→,which was branched at the O-4 position of→2,4)-α-L-Rhap-(1→.Moreover,these three polysaccharide fractions could protect Huh-7 cells against H2O2-induced oxidative stress to different extents by decreasing the MDA content and increasing the SOD,CAT,GSH-Px activities and the GSH level in the Huh-7 cells.These results suggest that OFPPs have the potential to be used as natural antioxidants.展开更多
Long non-coding RNAs(lncRNAs) play important roles in response to various biotic and abiotic stresses. So far, systematic identification and characterization of lncRNAs have been reported in a few model plant species ...Long non-coding RNAs(lncRNAs) play important roles in response to various biotic and abiotic stresses. So far, systematic identification and characterization of lncRNAs have been reported in a few model plant species and major crops, but their roles in abiotic stress response have not yet been reported in common wild rice(Oryza rufipogon). Dongxiang wild rice(DXWR) possesses a high degree of drought resistance and has been well recognized as a precious genetic resource for drought resistant rice breeding. We presented the reference catalog of 1 655 novel lncRNA transcripts in DXWR using strand-specific RNA sequencing and bioinformatics approaches. Meanwhile, a total of 1092 lncRNAs were determined as differentially expressed lncRNAs under drought stress. Quantitative real-time PCR results exhibited a high concordance with RNA sequencing data, which confirmed that the expression patterns of lncRNAs based on RNA sequencing were highly reliable. Furthermore, 8 711 transcripts were predicted as target genes of the differentially expressed lncRNAs. Functional annotation analysis based on Gene Ontology and Kyoto Encyclopedia of Genes and Genomes databases showed that the target genes were significantly enriched in cellular and metabolic processes, cell part, binding and plant hormone signal transduction, as well as many other terms related to abiotic stress resistance. These results expanded our understanding of lncRNA biology and provided candidate regulators for genetic improvement of drought resistance in rice cultivars.展开更多
通过压入测试以获取工程服役结构、小型构件和焊接结构焊缝过渡区的材料单轴本构关系参数,且根据材料本构关系参数来估算材料的压入硬度对于工程设计和安全评估有重要意义。对于幂律材料,本文依据锥形压入试验原理和弹塑性接触有限元分...通过压入测试以获取工程服役结构、小型构件和焊接结构焊缝过渡区的材料单轴本构关系参数,且根据材料本构关系参数来估算材料的压入硬度对于工程设计和安全评估有重要意义。对于幂律材料,本文依据锥形压入试验原理和弹塑性接触有限元分析(EPFEA),揭示了不同锥角的锥形压头其压入能量比与屈服应力之间存在线性关系,提出了基于能量原理预测金属材料本构关系部分关键参数(弹性模量、屈服应力和硬化指数)的CR-EMI(Constitutive Rela-tionship based on Energy Method of Indentation)方法。同时,基于此种线性关系提出了由Hollomon本构关系模型参数预测硬度的H-EMI(Hardness based on Energy Method of Indentation)方法。通过对多种金属材料进行压入试验和有限元分析,验证了CR-EMI方法和H-EMI方法的有效性与精确性。展开更多
Non-destructive stress characterization is essential for gate-all-around(GAA)nanosheet(NS)transistors technology,while it is a big challenge to be realized on nanometer-sized GAA devices by using traditional Micro-Ram...Non-destructive stress characterization is essential for gate-all-around(GAA)nanosheet(NS)transistors technology,while it is a big challenge to be realized on nanometer-sized GAA devices by using traditional Micro-Raman spectroscopy due to its light spot far exceeding the device.In this work,a non-destructive stress characterization methodology of confocal Raman spectroscopy was proposed and performed for GAANS device fabrication.Channel stress evolution along the fabrication process was successfully characterized by designing high-density NS array and analyzing the linear scanned spectra in different structures.The related mechanism of stress evolution was systematically studied by Sentaurus process simulation.Additionally,applying this methodology on detecting the bending of suspended NS after channel release process was demonstrated.Therefore,this work might provide a promising solution to realize in-line characterization of channel stress in GAA NS transistors and process monitor of NS channel integrity.展开更多
We present a workflow linking coupled fluid-flow and geomechanical simulation with seismic modelling to predict seismic anisotropy induced by non-hydrostatic stress changes. We generate seismic models from coupled sim...We present a workflow linking coupled fluid-flow and geomechanical simulation with seismic modelling to predict seismic anisotropy induced by non-hydrostatic stress changes. We generate seismic models from coupled simulations to examine the relationship between reservoir geometry, stress path and seismic anisotropy. The results indicate that geometry influences the evolution of stress,which leads to stress-induced seismic anisotropy. Although stress anisotropy is high for the small reservoir, the effect of stress arching and the ability of the side-burden to support the excess load limit the overall change in effective stress and hence seismic anisotropy. For the extensive reservoir, stress anisotropy and induced seismic anisotropy are high. The extensive and elongate reservoirs experience significant compaction, where the inefficiency of the developed stress arching in the side-burden cannot support the excess load.The elongate reservoir displays significant stress asymmetry,with seismic anisotropy developing predominantly along the long-edge of the reservoir. We show that the link betweenstress path parameters and seismic anisotropy is complex,where the anisotropic symmetry is controlled not only by model geometry but also the nonlinear rock physics model used. Nevertheless, a workflow has been developed to model seismic anisotropy induced by non-hydrostatic stress changes, allowing field observations of anisotropy to be linked with geomechanical models.展开更多
Salinity is one of the most important abiotic stresses that adversely affects crop growth and productivity. A subtractive suppression hybridization (SSH) library were constructed from the roots of salt-sensitive Yul...Salinity is one of the most important abiotic stresses that adversely affects crop growth and productivity. A subtractive suppression hybridization (SSH) library were constructed from the roots of salt-sensitive Yulu cultivar melon seedlings under salt stress; 557 high-quality expressed sequence tags (ESTs) were randomly sequenced, with an average size of 428 bp, which assembled into 68 contigs and 315 singletons. Compared with our previous SSH library generated from the salt-tolerant Bingxuecui cultivar, the proportion of transcripts involved in metabolism, protein fate, cellular communication/signal transduction mechanisms, and cell rescue/defense were 4, 1.46, 0.94, and 0.4% higher, respectively, in the salt-tolerant cultivar than the in salt-sensitive cultivar. Quantitative real-time PCR analysis of eleven transcripts revealed temporal variations in their expression in the two cultivars under salt stress. One NAC gene (JZ477011) was heterologously expressed in yeast for functional characterization, and enhanced the sensitivity of yeast cells to high-salinity to salt stress and inhibited their growth. Information regards to their functions would aid in the understanding of response mechanisms to saline stress and in the development of molecular markers for selecting salt-tolerant melon cultivars.展开更多
Rhizobia are vital for nitrogen input, fertility of soil and legume plant growth. Knowledge on rhizobial diversity from arid and semiarid areas is important for dry land agriculture in the context of climatic change a...Rhizobia are vital for nitrogen input, fertility of soil and legume plant growth. Knowledge on rhizobial diversity from arid and semiarid areas is important for dry land agriculture in the context of climatic change and for economic utilization. This study provides morphological, biochemical, stress tolerance and plant growth promoting characteristics of fifteen rhizobial isolates from the nodules of same number of wild legumes and one isolate from cultivated Arachis hypogea from semi-arid region, Tirupati. The bacterial isolates were confirmed as rhizobia based on colony morphology and biochemical tests. Based on the colour change of YMA-BTB medium, eight isolates were identified as slow growers and six were fast growers. The isolates differed in growth pattern, colony morphology, antibiotic resistance at higher concentrations and uniformity in utilization of carbon and nitrogen sources. The isolates are tolerant to NaCl up to one percent, displayed normal growth at temperatures 28℃ - 30℃, at neutral pH and poor growth at pH 5and 9. The isolates varied in the production of EPS and IAA, positive for phosphate solubilization and siderophore formation. This functional diversity displayed by the isolates can be utilised for the legume crop production by cross inoculation.展开更多
基金supported by the National Natural Science Foundation of China (31371618)the Research Plan of Application Base of Hebei, China (17962901D)
文摘Through regulating target genes via the mechanisms of posttranscriptional cleavage or translational repression, plant miRNAs involve diverse biological processes associating with plant growth, development, and abiotic stress responses, in this study, we functionally characterized TaMIR1119, a miRNA family member of wheat (Triticum aestivum), in regulating the drought adaptive response of plants. TaMIR1119 putatively targets six genes categorized into the functional classes of transcriptional regulation, RNA and biochemical metabolism, trafficking, and oxidative stress defense. Upon simulated drought stress, the TaMIR1119 transcripts abundance in roots was drastically altered, showing to be upregulated gradually within a 48-h drought regime andthat the drought-induced transcripts were gradually restored along with a 48-h recovery treatment. In contrast, most miRNA target genes displayed reverse expression patterns to TaMIR1119, exhibiting a downregulated expression pattern upon drought and whose reduced transcripts were re-elevated along with a normal recovery treatment. These expression analysis results indicated that TaMIR1119 responds to drought and regulates the target genes mainly through a cleavage mechanism. Under drought stress, the tobacco lines with TaMIR1119 overexpression behaved improved phenotypes,, showing increased plant biomass, photosynthetic parameters, osmolyte accumulation, and enhanced antioxidant enzyme (AE) activities relative to wild type. Three AE genes, NtFeSOD, NtCAT1;3, and NtSOD2,1, encoding superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD) proteins, respectively, showed upregulated expression in TaMIR1119 overexpression lines, suggesting that they are involved in the regulation of AE activities and contribution to the improved cellular reactive oxygen species (ROS) homeostasis in drought-challenged transgenic lines. Our results indicate that TaMIR1119 plays critical roles in regulating plant drought tolerance through transcriptionally regulating
基金supported by the Zhejiang Provincial Key R&D Program of China(No.2021C02018)the Open Project of Wencheng Joint Research Center of Big Health Industry of Zhejiang University(No.Zdwc2205),China.
文摘Wax apple(Syzygium samarangense)has received growing research interest for its high nutritional and medicinal value due to its constituents such as polysaccharide,organic acids,flavonoids,minerals,and other substances.In this study,wax apple polysaccharide(WAP)was isolated from this plant and its protective effect against ethyl carbamate(EC)-induced oxidative damage was evaluated in human hepatocytes(L02 cells).Firstly,a series of analyses such as high-performance liquid chromatography(HPLC),high-performance gel permeation chromatography(HPGPC),Fourier transform infrared spectroscopy(FT-IR),gas chromatography/mass spectrometry(GC/MS),and 1H and 13C nuclear magnetic resonance(NMR)were conducted to identify the structure of,in vitro cell experiments were performed to verify the protective effects of WAP against EC-induced cytotoxicity,genotoxicity,and oxidative damage in L02 cells.Our results revealed that WAP is composed of mannose,rhamnose,glucuronic acid,galacturonic acid,glucose,galactose,arabinose,and fucose in a molar ratio of 2.20:3.94:4.45:8.56:8.86:30.82:39.78:1.48.Using a combination of methylation and NMR spectroscopic analysis,the primary structure of WAP was identified as Araf-(1→,Glcp-(1→,→2)-Araf-(1→,→3)-Galp-(1→,→3)-Araf-(1→,and→6)-Galp-(1→.Cell experiments indicated that WAP exhibited significant protective effects on EC-treated L02 cells via suppressing cytotoxicity and genotoxicity,reducing reactive oxygen species(ROS)and O2?-formation,as well as improving mitochondrial membrane potential(MMP)and glutathione(GSH).In a nutshell,WAP has the potential as an important therapeutic agent or supplement for hepatic oxidative damage.Meanwhile,further studies are needed to prove the above effects in vivo at the biological and clinical levels.
基金supported by the National Natural Science Foundation of China(No.31972977)。
文摘Three novel acidic polysaccharide fractions(OFPP-1,OFPP-2,OFPP-3)with different m olecular weights(803.7,555.1 and 414.5 k Da)were isolated from the peeled Opuntia dillenii Haw.fruits by alkali-extraction,graded alcohol precipitation and column chromatography.Structural analysis indicated that OFPPs were pectic polysaccharides consisting of rhamnose,arabinose and galactose residues.The backbone of OFPP-1 consisted of a repeating unit→6-α-D-Galp A-(1→2)-α-L-Rhap-(1→with T-α-D-Galp A-(1→6)-α-D-Galp A-(1→4)-α-D-Glcp-(1→,T-β-D-Xylp-(1→6)-α-D-Galp A-(1→4)-α-D-Glcp-(1→or T-α-D-Galp A-(1→3)-α-L-Araf-(1→as the side chains.The backbone of OFPP-2 consisted of a disaccharide repeating unit→2)-α-L-Rhap-(1→4)-β-D-Galp A-(1→with T-β-L-Araf-(1→as the branches substituted at the O-4 position of→2,4)-α-LRhap-(1→.Whereas the backbone of OFPP-3 was→2,4)-α-L-Rhap-(1→2)-α-L-Rhap-(1→3)-β-L-Araf-(1→or→2,4)-α-L-Rhap-(1→2)-α-L-Rhap-(1→4)-β-D-Galp A-(1→,which was branched at the O-4 position of→2,4)-α-L-Rhap-(1→.Moreover,these three polysaccharide fractions could protect Huh-7 cells against H2O2-induced oxidative stress to different extents by decreasing the MDA content and increasing the SOD,CAT,GSH-Px activities and the GSH level in the Huh-7 cells.These results suggest that OFPPs have the potential to be used as natural antioxidants.
基金supported by the National Natural Science Foundation of China (Grant No. 31660386)the Natural Science Foundation of Jiangxi Province for Distinguished Young Scholars (Grant No. 20171BCB23040)+1 种基金the Foundation of Jiangxi Educational Committee (Grant No. GJJ170193)the Sponsored Program for Distinguished Young Scholars in Jiangxi Normal University, China
文摘Long non-coding RNAs(lncRNAs) play important roles in response to various biotic and abiotic stresses. So far, systematic identification and characterization of lncRNAs have been reported in a few model plant species and major crops, but their roles in abiotic stress response have not yet been reported in common wild rice(Oryza rufipogon). Dongxiang wild rice(DXWR) possesses a high degree of drought resistance and has been well recognized as a precious genetic resource for drought resistant rice breeding. We presented the reference catalog of 1 655 novel lncRNA transcripts in DXWR using strand-specific RNA sequencing and bioinformatics approaches. Meanwhile, a total of 1092 lncRNAs were determined as differentially expressed lncRNAs under drought stress. Quantitative real-time PCR results exhibited a high concordance with RNA sequencing data, which confirmed that the expression patterns of lncRNAs based on RNA sequencing were highly reliable. Furthermore, 8 711 transcripts were predicted as target genes of the differentially expressed lncRNAs. Functional annotation analysis based on Gene Ontology and Kyoto Encyclopedia of Genes and Genomes databases showed that the target genes were significantly enriched in cellular and metabolic processes, cell part, binding and plant hormone signal transduction, as well as many other terms related to abiotic stress resistance. These results expanded our understanding of lncRNA biology and provided candidate regulators for genetic improvement of drought resistance in rice cultivars.
文摘通过压入测试以获取工程服役结构、小型构件和焊接结构焊缝过渡区的材料单轴本构关系参数,且根据材料本构关系参数来估算材料的压入硬度对于工程设计和安全评估有重要意义。对于幂律材料,本文依据锥形压入试验原理和弹塑性接触有限元分析(EPFEA),揭示了不同锥角的锥形压头其压入能量比与屈服应力之间存在线性关系,提出了基于能量原理预测金属材料本构关系部分关键参数(弹性模量、屈服应力和硬化指数)的CR-EMI(Constitutive Rela-tionship based on Energy Method of Indentation)方法。同时,基于此种线性关系提出了由Hollomon本构关系模型参数预测硬度的H-EMI(Hardness based on Energy Method of Indentation)方法。通过对多种金属材料进行压入试验和有限元分析,验证了CR-EMI方法和H-EMI方法的有效性与精确性。
基金supported by the platform for the development of next generation integration circuit technology.
文摘Non-destructive stress characterization is essential for gate-all-around(GAA)nanosheet(NS)transistors technology,while it is a big challenge to be realized on nanometer-sized GAA devices by using traditional Micro-Raman spectroscopy due to its light spot far exceeding the device.In this work,a non-destructive stress characterization methodology of confocal Raman spectroscopy was proposed and performed for GAANS device fabrication.Channel stress evolution along the fabrication process was successfully characterized by designing high-density NS array and analyzing the linear scanned spectra in different structures.The related mechanism of stress evolution was systematically studied by Sentaurus process simulation.Additionally,applying this methodology on detecting the bending of suspended NS after channel release process was demonstrated.Therefore,this work might provide a promising solution to realize in-line characterization of channel stress in GAA NS transistors and process monitor of NS channel integrity.
基金the sponsors of the IPEGG project, BG, BP, Statoilthe Research Council UK (EP/K035878/1+1 种基金 EP/K021869/1 NE/L000423/1) for financial support
文摘We present a workflow linking coupled fluid-flow and geomechanical simulation with seismic modelling to predict seismic anisotropy induced by non-hydrostatic stress changes. We generate seismic models from coupled simulations to examine the relationship between reservoir geometry, stress path and seismic anisotropy. The results indicate that geometry influences the evolution of stress,which leads to stress-induced seismic anisotropy. Although stress anisotropy is high for the small reservoir, the effect of stress arching and the ability of the side-burden to support the excess load limit the overall change in effective stress and hence seismic anisotropy. For the extensive reservoir, stress anisotropy and induced seismic anisotropy are high. The extensive and elongate reservoirs experience significant compaction, where the inefficiency of the developed stress arching in the side-burden cannot support the excess load.The elongate reservoir displays significant stress asymmetry,with seismic anisotropy developing predominantly along the long-edge of the reservoir. We show that the link betweenstress path parameters and seismic anisotropy is complex,where the anisotropic symmetry is controlled not only by model geometry but also the nonlinear rock physics model used. Nevertheless, a workflow has been developed to model seismic anisotropy induced by non-hydrostatic stress changes, allowing field observations of anisotropy to be linked with geomechanical models.
基金supported by grants from the National Natural Science Foundation of China(31372079)the National High Technology Research and Development Program of China(863 Program,2012AA101903)+1 种基金the Natural Science Foundation of Shanghai Science and Technology Committee,China(13ZR1422400)Shanghi Graduate Education and Innovation Program(Horticulture),China
文摘Salinity is one of the most important abiotic stresses that adversely affects crop growth and productivity. A subtractive suppression hybridization (SSH) library were constructed from the roots of salt-sensitive Yulu cultivar melon seedlings under salt stress; 557 high-quality expressed sequence tags (ESTs) were randomly sequenced, with an average size of 428 bp, which assembled into 68 contigs and 315 singletons. Compared with our previous SSH library generated from the salt-tolerant Bingxuecui cultivar, the proportion of transcripts involved in metabolism, protein fate, cellular communication/signal transduction mechanisms, and cell rescue/defense were 4, 1.46, 0.94, and 0.4% higher, respectively, in the salt-tolerant cultivar than the in salt-sensitive cultivar. Quantitative real-time PCR analysis of eleven transcripts revealed temporal variations in their expression in the two cultivars under salt stress. One NAC gene (JZ477011) was heterologously expressed in yeast for functional characterization, and enhanced the sensitivity of yeast cells to high-salinity to salt stress and inhibited their growth. Information regards to their functions would aid in the understanding of response mechanisms to saline stress and in the development of molecular markers for selecting salt-tolerant melon cultivars.
文摘Rhizobia are vital for nitrogen input, fertility of soil and legume plant growth. Knowledge on rhizobial diversity from arid and semiarid areas is important for dry land agriculture in the context of climatic change and for economic utilization. This study provides morphological, biochemical, stress tolerance and plant growth promoting characteristics of fifteen rhizobial isolates from the nodules of same number of wild legumes and one isolate from cultivated Arachis hypogea from semi-arid region, Tirupati. The bacterial isolates were confirmed as rhizobia based on colony morphology and biochemical tests. Based on the colour change of YMA-BTB medium, eight isolates were identified as slow growers and six were fast growers. The isolates differed in growth pattern, colony morphology, antibiotic resistance at higher concentrations and uniformity in utilization of carbon and nitrogen sources. The isolates are tolerant to NaCl up to one percent, displayed normal growth at temperatures 28℃ - 30℃, at neutral pH and poor growth at pH 5and 9. The isolates varied in the production of EPS and IAA, positive for phosphate solubilization and siderophore formation. This functional diversity displayed by the isolates can be utilised for the legume crop production by cross inoculation.