Flexural performance of joints is critical for prefabricated structures.This study presents a novel channel steel-bolt(CB)joint for prefabricated subway stations.Full-scale tests are carried out to investigate the fle...Flexural performance of joints is critical for prefabricated structures.This study presents a novel channel steel-bolt(CB)joint for prefabricated subway stations.Full-scale tests are carried out to investigate the flexural behavior of the CB joint under the design loads of the test-case station.In addition,a three dimensional(3D)finite element(FE)model of the CB joint is established,incorporating viscous contact to simulate the bonding and detachment behaviors of the interface between channel steel and concrete.Based on the 3D FE model,the study examines the flexural bearing mechanism and influencing factors for the flexural performance of the CB joint.The results indicate that the flexural behavior of the CB joint exhibits significant nonlinear characteristics,which can be divided into four stages.To illustrate the piecewise linearity of the bending moment-rotational angle curve,a four-stage simplified model is proposed,which is easily applicable in engineering practice.The study reveals that axial force can enhance the flexural capacity of the CB joint,while the preload of the bolt has a negligible effect.The flexural capacity of the CB joint is approximate twice the value of the designed bending moment,demonstrating that the joint is suitable for the test-case station.展开更多
In order to solve the surrounding rock control problem of large section gangue replacement roadway under complicated conditions, this paper analyzed the impact to the roadway controlling produced by the geological con...In order to solve the surrounding rock control problem of large section gangue replacement roadway under complicated conditions, this paper analyzed the impact to the roadway controlling produced by the geological conditions such as high ground stress, folded structure tilted roof asymmetry and soft wall rock, and built the tilt layered roof structural mechanics model to clarify the increase span mechanism of the weak coal instability. Then, we proposed the combined control system including roof inclined truss cable, coal-side cable-channel steel and intensive bolt support. And then by building the structural mechanics model of roof inclined truss cable system, the support principle was described. Besides, according to this model, we deduced the calculation formula of cable anchoring force and its tensile stress. Finally surrounding rock control technology of large section roadway in fold coal pillar area was formed. Field practice shows that the greatest roof convergence of gangue replacement roadway is 158 mm and coal-side deformation is 243 mm. Roadway deformation is controlled effectively and technical support is provided for replacement mining.展开更多
基金This work was financially supported by the Key Research and Development Program of Guangdong Province(No.2019B111105001)the National Natural Science Foundation of China(Grant No.51938008)the Natural Science Foundation of Shenzhen(No.JCYJ20210324094607020).
文摘Flexural performance of joints is critical for prefabricated structures.This study presents a novel channel steel-bolt(CB)joint for prefabricated subway stations.Full-scale tests are carried out to investigate the flexural behavior of the CB joint under the design loads of the test-case station.In addition,a three dimensional(3D)finite element(FE)model of the CB joint is established,incorporating viscous contact to simulate the bonding and detachment behaviors of the interface between channel steel and concrete.Based on the 3D FE model,the study examines the flexural bearing mechanism and influencing factors for the flexural performance of the CB joint.The results indicate that the flexural behavior of the CB joint exhibits significant nonlinear characteristics,which can be divided into four stages.To illustrate the piecewise linearity of the bending moment-rotational angle curve,a four-stage simplified model is proposed,which is easily applicable in engineering practice.The study reveals that axial force can enhance the flexural capacity of the CB joint,while the preload of the bolt has a negligible effect.The flexural capacity of the CB joint is approximate twice the value of the designed bending moment,demonstrating that the joint is suitable for the test-case station.
文摘In order to solve the surrounding rock control problem of large section gangue replacement roadway under complicated conditions, this paper analyzed the impact to the roadway controlling produced by the geological conditions such as high ground stress, folded structure tilted roof asymmetry and soft wall rock, and built the tilt layered roof structural mechanics model to clarify the increase span mechanism of the weak coal instability. Then, we proposed the combined control system including roof inclined truss cable, coal-side cable-channel steel and intensive bolt support. And then by building the structural mechanics model of roof inclined truss cable system, the support principle was described. Besides, according to this model, we deduced the calculation formula of cable anchoring force and its tensile stress. Finally surrounding rock control technology of large section roadway in fold coal pillar area was formed. Field practice shows that the greatest roof convergence of gangue replacement roadway is 158 mm and coal-side deformation is 243 mm. Roadway deformation is controlled effectively and technical support is provided for replacement mining.