AIM: To evaluate the dynamic ocular biometric changes of a modified form-deprivation myopia model in young guinea pigs. METHODS: The animals were randomly assigned to two groups: the monocularly deprived facemask grou...AIM: To evaluate the dynamic ocular biometric changes of a modified form-deprivation myopia model in young guinea pigs. METHODS: The animals were randomly assigned to two groups: the monocularly deprived facemask group (MDF, with all the right eyes covered, n=24) and the normal control group(free of facemask, n=24). Each group was then equally divided into four subgroups which were followed up for 2, 4, 6 and 8 weeks, respectively. Parameters measured from every eye included refraction, corneal curvature, axial length and the dry weight of sclera at the posterior pole. RESULTS: All the facemasks remained in place during the follow-up. The covered eyes developed myopia with the vitreous chamber lengthening and the dry weight of posterior sclera reduced at each time point compared with the contralateral uncovered (P<0.05 at all time points). The changes had a linear correlation with the deprivation time (P<0.05). There were no significant differences in all the parameters between the uncovered eyes of MDF group and the normal control group (P>0.05 at all time points). CONCLUSION: Monocular form deprivation with the facemask is highly effective and non-invasive in inducing axial myopia in guinea pigs. The axial myopia is mainly caused by the increased vitreous chamber length and the weakened posterior sclera rigidity. The form-deprivation eye didn't interfere with the natural development of the contralateral eye.展开更多
Thermal interface materials(TIMs) play a vital role in the thermal management of electronic devices and can significantly reduce thermal contact resistance(TCR). The TCR between the solid–liquid contact surface is mu...Thermal interface materials(TIMs) play a vital role in the thermal management of electronic devices and can significantly reduce thermal contact resistance(TCR). The TCR between the solid–liquid contact surface is much smaller than that of the solid–solid contact surface, but conventional solid–liquid phase change materials are likely to cause serious leakage. Therefore, this work has prepared a new formstable phase change thermal interface material. Through the melt blending of paraffin wax(PW) and low-density polyethylene(LDPE), the stability is improved and it has an excellent coating effect on PW. The addition of aluminum(Al) powder improves the low thermal conductivity of PW/LDPE, and the addition of 15wt% Al powder improves the thermal conductivity of the internal structure of the matrix by 67%. In addition, the influence of the addition of Al powder on the internal structure, thermal properties, and phase change behavior of the PW/LDPE matrix was systematically studied. The results confirmed that the addition of Al powder improved the thermal conductivity of the material without a significant impact on other properties, and the thermal conductivity increased with the increase of Al addition. Therefore, morphologically stable PW/LDPE/Al is an important development direction for TIMs.展开更多
文摘AIM: To evaluate the dynamic ocular biometric changes of a modified form-deprivation myopia model in young guinea pigs. METHODS: The animals were randomly assigned to two groups: the monocularly deprived facemask group (MDF, with all the right eyes covered, n=24) and the normal control group(free of facemask, n=24). Each group was then equally divided into four subgroups which were followed up for 2, 4, 6 and 8 weeks, respectively. Parameters measured from every eye included refraction, corneal curvature, axial length and the dry weight of sclera at the posterior pole. RESULTS: All the facemasks remained in place during the follow-up. The covered eyes developed myopia with the vitreous chamber lengthening and the dry weight of posterior sclera reduced at each time point compared with the contralateral uncovered (P<0.05 at all time points). The changes had a linear correlation with the deprivation time (P<0.05). There were no significant differences in all the parameters between the uncovered eyes of MDF group and the normal control group (P>0.05 at all time points). CONCLUSION: Monocular form deprivation with the facemask is highly effective and non-invasive in inducing axial myopia in guinea pigs. The axial myopia is mainly caused by the increased vitreous chamber length and the weakened posterior sclera rigidity. The form-deprivation eye didn't interfere with the natural development of the contralateral eye.
基金supported by the National Natural Science Foundation of China, China (No. 51874047)the Key Science and Technology Project of Changsha City, China (No. kq2102005)+1 种基金the Special Fund for the Construction of Innovative Province in Hunan Province, China (No. 2020RC3038)the Changsha City Fund for Distinguished and Innovative Young Scholars, China (No. kq1802007)。
文摘Thermal interface materials(TIMs) play a vital role in the thermal management of electronic devices and can significantly reduce thermal contact resistance(TCR). The TCR between the solid–liquid contact surface is much smaller than that of the solid–solid contact surface, but conventional solid–liquid phase change materials are likely to cause serious leakage. Therefore, this work has prepared a new formstable phase change thermal interface material. Through the melt blending of paraffin wax(PW) and low-density polyethylene(LDPE), the stability is improved and it has an excellent coating effect on PW. The addition of aluminum(Al) powder improves the low thermal conductivity of PW/LDPE, and the addition of 15wt% Al powder improves the thermal conductivity of the internal structure of the matrix by 67%. In addition, the influence of the addition of Al powder on the internal structure, thermal properties, and phase change behavior of the PW/LDPE matrix was systematically studied. The results confirmed that the addition of Al powder improved the thermal conductivity of the material without a significant impact on other properties, and the thermal conductivity increased with the increase of Al addition. Therefore, morphologically stable PW/LDPE/Al is an important development direction for TIMs.