Owing to the unreliability of wireless link and the resource constraints of embedded devices in terms of energy, processing power, and memory size in low power and lossy networks (LLNs), network congestion may occur...Owing to the unreliability of wireless link and the resource constraints of embedded devices in terms of energy, processing power, and memory size in low power and lossy networks (LLNs), network congestion may occur in an emergency and lead to significant packet loss and end-to-end delay. To mitigate the effect of network congestion, this paper proposes a centralized congestion control routing protocol based on multi-metrics (CCRPM). It combines the residual energy of a node, buffer occupancy rate, wireless link quality, and the current number of sub-nodes for the candidate parent to reduce the probability of network congestion in the process of network construction. In addition, it adopts a centralized way to determine whether the sub-nodes of the congested node need to be switched based on the traffic analysis when network congestion occurs. Theoretical analysis and extensive simulation results show that compared with the existing routing protocol, the performance of CCRPM is improved significantly in reducing the probability of network congestion, prolonging average network lifetime, increasing network throughput, and decreasing end-to-end delay.展开更多
Wireless sensor networks (WSNs) attract considerable amount of research efforts from both industry and academia. With limited power and computational capability available on a sensor node, robustness and efficiency ar...Wireless sensor networks (WSNs) attract considerable amount of research efforts from both industry and academia. With limited power and computational capability available on a sensor node, robustness and efficiency are the main concerns when designing a routing protocol for WSNs with low complexity. There are various existing design approaches, such as data-centric approach, hierarchical approach and location-based approach, which were designed for a particular application with specific requirements. In this paper, we study the design and implementation of a routing protocol for data acquisition in WSNs. The designed routing protocol is named Centralized Sensor Protocol for Information via Negotiation (CSPIN), which essentially combines the advertise-request-transfer process and a routing distribution mechanism. Implementation is realized and demonstrated with the Crossbow MicaZ hardware using nesC/TinyOS. It was our intention to provide a hand-on study of implementation of centralized routing protocol for WSNs.展开更多
基金supported by the National Natural Science Foundation of China (61379159)the Foundation and Frontier Research Project of Chongqing (cstc2015jcyjBX0085)
文摘Owing to the unreliability of wireless link and the resource constraints of embedded devices in terms of energy, processing power, and memory size in low power and lossy networks (LLNs), network congestion may occur in an emergency and lead to significant packet loss and end-to-end delay. To mitigate the effect of network congestion, this paper proposes a centralized congestion control routing protocol based on multi-metrics (CCRPM). It combines the residual energy of a node, buffer occupancy rate, wireless link quality, and the current number of sub-nodes for the candidate parent to reduce the probability of network congestion in the process of network construction. In addition, it adopts a centralized way to determine whether the sub-nodes of the congested node need to be switched based on the traffic analysis when network congestion occurs. Theoretical analysis and extensive simulation results show that compared with the existing routing protocol, the performance of CCRPM is improved significantly in reducing the probability of network congestion, prolonging average network lifetime, increasing network throughput, and decreasing end-to-end delay.
文摘Wireless sensor networks (WSNs) attract considerable amount of research efforts from both industry and academia. With limited power and computational capability available on a sensor node, robustness and efficiency are the main concerns when designing a routing protocol for WSNs with low complexity. There are various existing design approaches, such as data-centric approach, hierarchical approach and location-based approach, which were designed for a particular application with specific requirements. In this paper, we study the design and implementation of a routing protocol for data acquisition in WSNs. The designed routing protocol is named Centralized Sensor Protocol for Information via Negotiation (CSPIN), which essentially combines the advertise-request-transfer process and a routing distribution mechanism. Implementation is realized and demonstrated with the Crossbow MicaZ hardware using nesC/TinyOS. It was our intention to provide a hand-on study of implementation of centralized routing protocol for WSNs.