The central unit(benzo[c][1,2,5]thiadiazole) in Y6 series of molecules plays a determining role in their unique intermolecular packing for a three-dimensionally(3D) network, largely endowing their organic solar cells(...The central unit(benzo[c][1,2,5]thiadiazole) in Y6 series of molecules plays a determining role in their unique intermolecular packing for a three-dimensionally(3D) network, largely endowing their organic solar cells(OSCs) with so far the best power conversion efficiencies(PCEs) and also largely suppressed energy losses(Eloss). Despite its vital role in molecular packing, very few explorations for central unit have been conducted due to possibly the constructing challenge of central heterocyclic units.Herein, a highly efficient acceptor-donor-acceptor(A-D-A) type electron acceptor, CH17, has been designed and constructed,featured with a prominent π extension in both directions of the central and end units with respect to Y6 series. Such a multiple and much enhanced conjugation extension in CH17 enables a much more effective and compact 3D molecular packing compared with that of Y6 supported by X-ray single crystal and other analysis, mainly caused by a newly observed distinctive dual “end unit to central unit” packing mode. This much favorable molecular packing, also kept in its blends with donor materials, leads a larger electron and hole transfer integrals and hence much improved charge transport, and reduced energetic disorders in CH17blends. More importantly, the observed upshifted charge transfer(CT) state of CH17 blends compared with that of Y6, due to its increased molecular conjugation extension in both directions, further enhances the hybridization between its CT and local exciton(LE) states, resulting in higher luminescence efficiency, much suppressed non-radiative recombination loss and smaller Elosswith respect to that of Y6. Consequently, an excellent PCE of 17.84% is achieved with PM6 as the donor in a binary device compared with a PCE of 16.27% for the controlled Y6 device. Furthermore, a further improved PCE of 18.13% is achieved by CH17-based ternary single-junction OSCs along with a markedly reduced Elossof 0.49 e V and larger open-circuit voltage(Voc) of0.89 V, compared with that(16.27% of展开更多
Inspired by the success of CH-series acceptors, a small-molecular acceptor, CH-Tz was reported by adopting a new conjugationextended electron-deficient unit([1,2,5]thiadiazolo[3,4-b]pyrazine) on the central core. Owin...Inspired by the success of CH-series acceptors, a small-molecular acceptor, CH-Tz was reported by adopting a new conjugationextended electron-deficient unit([1,2,5]thiadiazolo[3,4-b]pyrazine) on the central core. Owing to the enhanced inter-/intramolecular interactions, CH-Tz exhibited near-infrared absorption and an effective three-dimensional molecular packing network in its single crystal. When blended with polymer donor PM6, the binary device achieved a high power conversion efficiency(PCE) of 18.54%, with a notable short-circuit current density(J_(sc)) of 27.54 m A cm-2and an excellent fill factor(FF) over 80%,which can be partly ascribed to the balanced charge transport properties in the blend film. After employing D18-Cl as the third component, an enhanced PCE of 18.85% was achieved due to a more obvious fiber network. Impressively, the CH-Tz-based OSC devices show excellent thermal stability and thickness insensitivity. Record-breaking Jscof 28.92 m A cm-2was reached for PM6:D18-Cl:CH-Tz ternary device with a thickness of 560 nm. Besides, CH-Tz shows potential in fabricating multicomponent high-performance organic solar cells, where over 19% efficiency could be realized in the quaternary device. Our work advances the strong influence of electron-deficient central units on molecular photovoltaic properties and guides the design of acceptors for stable and large-thickness organic solar cells.展开更多
With the gradually widely usage of the air conditioning(AC) loads in developing countries, the urban power grid load has swiftly increased over the past decade.Especially in China, the AC load has accounted for over30...With the gradually widely usage of the air conditioning(AC) loads in developing countries, the urban power grid load has swiftly increased over the past decade.Especially in China, the AC load has accounted for over30% of the maximum load in many cities during summer.This paper proposes a scheme of constructing a virtual peaking unit(VPU) by public buildings’ cool storage central AC(CSCAC) systems and non-CSCAC(NCSCAC)systems for the day-ahead power network dispatching(DAPND). Considering the accumulation effect of different meteorological parameters, a short term load forecasting method of public building’s central AC(CAC) baseline load is firstly discussed. Then, a second-order equivalent thermal parameters model is established for the public building’s CAC load. Moreover, the novel load reduction control strategies for the public building’s CSCAC system and the public building’s NCSCAC system are respectively presented. Furthermore, based on the multiple-rank control strategy, the model of the DAPND with the participation of a VPU is set up. The VPU is composed of large-scale regulated public building’s CAC loads. To demonstrate the effectiveness of the proposed strategy, results of a sample study on a region in Nanjing which involves 22 public buildings’ CAC loads are described in this paper. Simulated results show that, by adopting the proposed DAPND scheme, the power network peak load in the region obviously decreases with a small enough deviation between the regulated load value and the dispatching instruction of the VPU. The total electricity-saving amount accounts for7.78% of total electricity consumption of the VPU before regulation.展开更多
High resolution cameras and multi camera systems are being used in areas of video surveillance like security of public places, traffic monitoring, and military and satellite imaging. This leads to a demand for computa...High resolution cameras and multi camera systems are being used in areas of video surveillance like security of public places, traffic monitoring, and military and satellite imaging. This leads to a demand for computational algorithms for real time processing of high resolution videos. Motion detection and background separation play a vital role in capturing the object of interest in surveillance videos, but as we move towards high resolution cameras, the time-complexity of the algorithm increases and thus fails to be a part of real time systems. Parallel architecture provides a surpass platform to work efficiently with complex algorithmic solutions. In this work, a method was proposed for identifying the moving objects perfectly in the videos using adaptive background making, motion detection and object estimation. The pre-processing part includes an adaptive block background making model and a dynamically adaptive thresholding technique to estimate the moving objects. The post processing includes a competent parallel connected component labelling algorithm to estimate perfectly the objects of interest. New parallel processing strategies are developed on each stage of the algorithm to reduce the time-complexity of the system. This algorithm has achieved a average speedup of 12.26 times for lower resolution video frames(320×240, 720×480, 1024×768) and 7.30 times for higher resolution video frames(1360×768, 1920×1080, 2560×1440) on GPU, which is superior to CPU processing. Also, this algorithm was tested by changing the number of threads in a thread block and the minimum execution time has been achieved for 16×16 thread block. And this algorithm was tested on a night sequence where the amount of light in the scene is very less and still the algorithm has given a significant speedup and accuracy in determining the object.展开更多
The 5G radio access network (RAN) architectm'e is supposed to be split into the central unit (CU) and the distributed unit (DU) in order to support more flexible transport networks and provide enhanced user exp...The 5G radio access network (RAN) architectm'e is supposed to be split into the central unit (CU) and the distributed unit (DU) in order to support more flexible transport networks and provide enhanced user experience. However, such functional split may also introduce some new technical issues. In this pa- per, we study the data fast retransmission issue introduced by this functional split in different scenarios and solutions are provided to handle this issue. With the fast data retransmis- sion mechanism proposed in this paper, the retransmitted da- ta packets could be identified and handled with high priority. In this way, the data delivery between the CU and DU in 5G RAN is assured.展开更多
Ternary organic solar cells(OSCs) have received extensive attention for improving the power conversion efficiency(PCE) of organic photovoltaics(OPVs). In this work, a novel donor material(ECTBD) consisting of benzodit...Ternary organic solar cells(OSCs) have received extensive attention for improving the power conversion efficiency(PCE) of organic photovoltaics(OPVs). In this work, a novel donor material(ECTBD) consisting of benzodithiophene(BDT) central electron donor unit was developed and synthesized. The small molecular donor has the same central unit as PM6. The addition of ECTBD into PM6:Y6 system could improve the morphology of active blend layer. In addition, ECTBD showed good morphologically compatibility when blending with PM6:Y6 host, resulting in the improvement of fill factor and current density. As a result, the ternary devices based on PM6:ECTBD:Y6 ternary system achieved a highest PCE of 16.51% with fill factor of 76.24%, which was much higher than that of the binary devices(15.7%). Overall, this work provided an effective strategy to fabricate highly efficient ternary organic solar cells through design of the novel small molecular donor as the third component.展开更多
The Altyn Tagh fault (ATF) extending in NEE—SWW direction lying at the northwestern boundary of Qinghai—Tibet plateau is the largest strike\|slip fault in Central Asia. On the basis of recent geologic mapping and de...The Altyn Tagh fault (ATF) extending in NEE—SWW direction lying at the northwestern boundary of Qinghai—Tibet plateau is the largest strike\|slip fault in Central Asia. On the basis of recent geologic mapping and detailed study of lithotectonic characteristics for the paleotectonic units at the two sides of the Altyn Tagh Fault ( Altun Mt. to west and the Qilian Mt. to east ) we propose that the paleotectonic units in the Altun Mt. can be correlated with those in the Qilian Mt. assuming 400km left\|lateral displacement for the Altyn Tagh fault. Natural seismic data across the Altun Mt. indicate that the Altyn Tagh fault is a lithospheric shear fault and the lithospheric shearing is probably related to southward intracontinental oblique subduction of the Tarim terrane beneath the Altun Mt.1\ Comparison of the major paleotectonic units at the two sides of the Altyn Tagh fault\;(1) The Alxa\|Dunhuang Massif:The Alxa massif lying at the southern margin of the Sino\|Korean craton consists mainly of an Early Proterozoic basement including high\|grade and middle\|grade metamorphic rocks, which were intruded by granite at 1719Ma. The Paleozoic passive margin sediments is well developed. In the Altun Mt., the Early Proterozoic and late Archean basement of the Duhuang massif includes high\|grade and middle\|grade metamorphic rocks dating 2789Ma (Sm\|Nd method) and 2405Ma (U\|Pb method).展开更多
The blood-spinal cord barrier plays a vital role in recovery after spinal cord injury.The neurovascular unit concept emphasizes the relationship between nerves and vessels in the brain,while the effect of the blood-sp...The blood-spinal cord barrier plays a vital role in recovery after spinal cord injury.The neurovascular unit concept emphasizes the relationship between nerves and vessels in the brain,while the effect of the blood-spinal cord barrier on the neurovascular unit is rarely reported in spinal cord injury studies.Mouse models of spinal cord injury were established by heavy object impact and then immediately injected with plateletderived growth factor(80μg/kg)at the injury site.Our results showed that after platelet-derived growth factor administration,spinal cord injury,neuronal apoptosis,and blood-spinal cord barrier permeability were reduced,excessive astrocyte proliferation and the autophagyrelated apoptosis signaling pathway were inhibited,collagen synthesis was increased,and mouse locomotor function was improved.In vitro,human umbilical vein endothelial cells were established by exposure to 200μM H2O2.At 2 hours prior to injury,in vitro cell models were treated with 5 ng/mL platelet-derived growth factor.Our results showed that expression of blood-spinal cord barrier-related proteins,including Occludin,Claudin 5,andβ-catenin,was significantly decreased and autophagy was significantly reduced.Additionally,the protective effects of platelet-derived growth factor could be reversed by intraperitoneal injection of 80 mg/kg chloroquine,an autophagy inhibitor,for 3 successive days prior to spinal cord injury.Our findings suggest that platelet-derived growth factor can promote endothelial cell repair by regulating autophagy,improve the function of the blood-spinal cord barrier,and promote the recovery of locomotor function post-spinal cord injury.Approval for animal experiments was obtained from the Animal Ethics Committee,Wenzhou Medical University,China(approval No.wydw2018-0043)in July 2018.展开更多
Anovel beamforming algorithmnamed Delay Multiply and Sum(DMAS),which excels at enhancing the resolution and contrast of ultrasonic image,has recently been proposed.However,there are nested loops in this algorithm,so t...Anovel beamforming algorithmnamed Delay Multiply and Sum(DMAS),which excels at enhancing the resolution and contrast of ultrasonic image,has recently been proposed.However,there are nested loops in this algorithm,so the calculation complexity is higher compared to the Delay and Sum(DAS)beamformer which is widely used in industry.Thus,we proposed a simple vector-based method to lower its complexity.The key point is to transform the nested loops into several vector operations,which can be efficiently implemented on many parallel platforms,such as Graphics Processing Units(GPUs),and multi-core Central Processing Units(CPUs).Consequently,we considered to implement this algorithm on such a platform.In order to maximize the use of computing power,we use the GPUs andmulti-core CPUs inmixture.The platform used in our test is a low cost Personal Computer(PC),where a GPU and a multi-core CPU are installed.The results show that the hybrid use of a CPU and a GPU can get a significant performance improvement in comparison with using a GPU or using amulti-core CPU alone.The performance of the hybrid system is increased by about 47%–63%compared to a single GPU.When 32 elements are used in receiving,the fame rate basically can reach 30 fps.In the best case,the frame rate can be increased to 40 fps.展开更多
Biological studies typically rely on a simple monolayer cell culture,which does not reflect the complex functional characteristics of human tissues and organs,or their real response to external stimuli.Microfluidic te...Biological studies typically rely on a simple monolayer cell culture,which does not reflect the complex functional characteristics of human tissues and organs,or their real response to external stimuli.Microfluidic technology has advantages of high-throughput screening,accurate control of the fluid velocity,low cell consumption,long-term culture,and high integration.By combining the multipotential differentiation of neural stem cells with high throughput and the integrated characteristics of microfluidic technology,an in vitro model of a functionalized neurovascular unit was established using human neural stem cell-derived neurons,astrocytes,oligodendrocytes,and a functional microvascular barrier.The model comprises a multi-layer vertical neural module and vascular module,both of which were connected with a syringe pump.This provides controllable conditions for cell inoculation and nutrient supply,and simultaneously simulates the process of ischemic/hypoxic injury and the process of inflammatory factors in the circulatory system passing through the blood-brain barrier and then acting on the nerve tissue in the brain.The in vitro functionalized neurovascular unit model will be conducive to central nervous system disease research,drug screening,and new drug development.展开更多
BACKGROUND The central venous line is an essential component in monitoring and managing critically ill patients.However,it poses patients with increased risks of severe infections with a higher probability of morbidit...BACKGROUND The central venous line is an essential component in monitoring and managing critically ill patients.However,it poses patients with increased risks of severe infections with a higher probability of morbidity and mortality.AIM To define the trends of the rates of central line-associated bloodstream infections(CLABSI)over four years,its predicted risk factors,aetiology,and the antimicrobial susceptibility of the isolated pathogens.METHODS The study was a prospective case-control study,performed according to the guidelines of the Center for Disease Control surveillance methodology for CLABSI in patients admitted to the adult intensive care unit(ICU)and auditing the implementation of its prevention bundle.RESULTS Thirty-four CLABSI identified over the study period,giving an average CLABSI rate of 3.2/1000 central line days.The infection's time trend displayed significant reductions over time concomitantly with the CLABSI prevention bundle's reinforcement from 4.7/1000 central line days at the beginning of 2016 to 1.4/1000 central line days by 2018.The most frequently identified pathogens causing CLABSI in our ICU were gram-negative organisms(59%).The most common offending organisms were Acinetobacter,Enterococcus,and Staphylococcus epidermidis,each of them accounted for 5 cases(15%).Multidrug-resistant organisms contributed to 56%of CLABSI.Its rate was higher when using femoral access and longer hospitalisation duration,especially in the ICU.Insertion of the central line in the non-ICU setting was another identified risk factor.CONCLUSION Implementing the prevention bundles reduced CLABSI significantly in our ICU.Implementing the CLABSI prevention bundle is crucial to maintain a substantial reduction in the CLABSI rate in the ICU setting.展开更多
基金supported by the National Natural Sciences Foundation of China (21935007, 52025033, 51873089)MoST of China (2019YFA0705900)+2 种基金Tianjin city (20JCZDJC00740)111 Project (B12015)the Opening Project of State Key Laboratory of Luminescent Materials and Devices (SCUT, 2021-skllmd-09)。
文摘The central unit(benzo[c][1,2,5]thiadiazole) in Y6 series of molecules plays a determining role in their unique intermolecular packing for a three-dimensionally(3D) network, largely endowing their organic solar cells(OSCs) with so far the best power conversion efficiencies(PCEs) and also largely suppressed energy losses(Eloss). Despite its vital role in molecular packing, very few explorations for central unit have been conducted due to possibly the constructing challenge of central heterocyclic units.Herein, a highly efficient acceptor-donor-acceptor(A-D-A) type electron acceptor, CH17, has been designed and constructed,featured with a prominent π extension in both directions of the central and end units with respect to Y6 series. Such a multiple and much enhanced conjugation extension in CH17 enables a much more effective and compact 3D molecular packing compared with that of Y6 supported by X-ray single crystal and other analysis, mainly caused by a newly observed distinctive dual “end unit to central unit” packing mode. This much favorable molecular packing, also kept in its blends with donor materials, leads a larger electron and hole transfer integrals and hence much improved charge transport, and reduced energetic disorders in CH17blends. More importantly, the observed upshifted charge transfer(CT) state of CH17 blends compared with that of Y6, due to its increased molecular conjugation extension in both directions, further enhances the hybridization between its CT and local exciton(LE) states, resulting in higher luminescence efficiency, much suppressed non-radiative recombination loss and smaller Elosswith respect to that of Y6. Consequently, an excellent PCE of 17.84% is achieved with PM6 as the donor in a binary device compared with a PCE of 16.27% for the controlled Y6 device. Furthermore, a further improved PCE of 18.13% is achieved by CH17-based ternary single-junction OSCs along with a markedly reduced Elossof 0.49 e V and larger open-circuit voltage(Voc) of0.89 V, compared with that(16.27% of
基金supported by the Ministry of Science and Technology of China (2022YFB4200400, 2019YFA0705900,2023YFE0210400)the National Natural Science Foundation of China(21935007, 52025033, 52303237, 22361132530)。
文摘Inspired by the success of CH-series acceptors, a small-molecular acceptor, CH-Tz was reported by adopting a new conjugationextended electron-deficient unit([1,2,5]thiadiazolo[3,4-b]pyrazine) on the central core. Owing to the enhanced inter-/intramolecular interactions, CH-Tz exhibited near-infrared absorption and an effective three-dimensional molecular packing network in its single crystal. When blended with polymer donor PM6, the binary device achieved a high power conversion efficiency(PCE) of 18.54%, with a notable short-circuit current density(J_(sc)) of 27.54 m A cm-2and an excellent fill factor(FF) over 80%,which can be partly ascribed to the balanced charge transport properties in the blend film. After employing D18-Cl as the third component, an enhanced PCE of 18.85% was achieved due to a more obvious fiber network. Impressively, the CH-Tz-based OSC devices show excellent thermal stability and thickness insensitivity. Record-breaking Jscof 28.92 m A cm-2was reached for PM6:D18-Cl:CH-Tz ternary device with a thickness of 560 nm. Besides, CH-Tz shows potential in fabricating multicomponent high-performance organic solar cells, where over 19% efficiency could be realized in the quaternary device. Our work advances the strong influence of electron-deficient central units on molecular photovoltaic properties and guides the design of acceptors for stable and large-thickness organic solar cells.
基金supported by National Key Technology Support Program (No. 2013BAA01B00)National Natural Science Foundation of China (No. 51361130152, No. 51577028)
文摘With the gradually widely usage of the air conditioning(AC) loads in developing countries, the urban power grid load has swiftly increased over the past decade.Especially in China, the AC load has accounted for over30% of the maximum load in many cities during summer.This paper proposes a scheme of constructing a virtual peaking unit(VPU) by public buildings’ cool storage central AC(CSCAC) systems and non-CSCAC(NCSCAC)systems for the day-ahead power network dispatching(DAPND). Considering the accumulation effect of different meteorological parameters, a short term load forecasting method of public building’s central AC(CAC) baseline load is firstly discussed. Then, a second-order equivalent thermal parameters model is established for the public building’s CAC load. Moreover, the novel load reduction control strategies for the public building’s CSCAC system and the public building’s NCSCAC system are respectively presented. Furthermore, based on the multiple-rank control strategy, the model of the DAPND with the participation of a VPU is set up. The VPU is composed of large-scale regulated public building’s CAC loads. To demonstrate the effectiveness of the proposed strategy, results of a sample study on a region in Nanjing which involves 22 public buildings’ CAC loads are described in this paper. Simulated results show that, by adopting the proposed DAPND scheme, the power network peak load in the region obviously decreases with a small enough deviation between the regulated load value and the dispatching instruction of the VPU. The total electricity-saving amount accounts for7.78% of total electricity consumption of the VPU before regulation.
文摘High resolution cameras and multi camera systems are being used in areas of video surveillance like security of public places, traffic monitoring, and military and satellite imaging. This leads to a demand for computational algorithms for real time processing of high resolution videos. Motion detection and background separation play a vital role in capturing the object of interest in surveillance videos, but as we move towards high resolution cameras, the time-complexity of the algorithm increases and thus fails to be a part of real time systems. Parallel architecture provides a surpass platform to work efficiently with complex algorithmic solutions. In this work, a method was proposed for identifying the moving objects perfectly in the videos using adaptive background making, motion detection and object estimation. The pre-processing part includes an adaptive block background making model and a dynamically adaptive thresholding technique to estimate the moving objects. The post processing includes a competent parallel connected component labelling algorithm to estimate perfectly the objects of interest. New parallel processing strategies are developed on each stage of the algorithm to reduce the time-complexity of the system. This algorithm has achieved a average speedup of 12.26 times for lower resolution video frames(320×240, 720×480, 1024×768) and 7.30 times for higher resolution video frames(1360×768, 1920×1080, 2560×1440) on GPU, which is superior to CPU processing. Also, this algorithm was tested by changing the number of threads in a thread block and the minimum execution time has been achieved for 16×16 thread block. And this algorithm was tested on a night sequence where the amount of light in the scene is very less and still the algorithm has given a significant speedup and accuracy in determining the object.
文摘The 5G radio access network (RAN) architectm'e is supposed to be split into the central unit (CU) and the distributed unit (DU) in order to support more flexible transport networks and provide enhanced user experience. However, such functional split may also introduce some new technical issues. In this pa- per, we study the data fast retransmission issue introduced by this functional split in different scenarios and solutions are provided to handle this issue. With the fast data retransmis- sion mechanism proposed in this paper, the retransmitted da- ta packets could be identified and handled with high priority. In this way, the data delivery between the CU and DU in 5G RAN is assured.
基金supported by the National Science Fund for Distinguished Young Scholars (21925506)the National Key R&D Program of China (2017YFE0106000)+5 种基金the National Natural Science Foundation of China (51773212)National Natural Science Foundation of China (21875286)Ningbo S&T Innovation 2025 Major Special Programme (2018B10055)Ningbo Municipal Science and Technology Innovative Research Team (2015B11002, 2016B10005)CAS Key Project of Frontier Science Research (QYZDB-SSW-SYS030)Science Fund for Distinguished Young Scholars of Hunan Province (2017JJ1029)。
文摘Ternary organic solar cells(OSCs) have received extensive attention for improving the power conversion efficiency(PCE) of organic photovoltaics(OPVs). In this work, a novel donor material(ECTBD) consisting of benzodithiophene(BDT) central electron donor unit was developed and synthesized. The small molecular donor has the same central unit as PM6. The addition of ECTBD into PM6:Y6 system could improve the morphology of active blend layer. In addition, ECTBD showed good morphologically compatibility when blending with PM6:Y6 host, resulting in the improvement of fill factor and current density. As a result, the ternary devices based on PM6:ECTBD:Y6 ternary system achieved a highest PCE of 16.51% with fill factor of 76.24%, which was much higher than that of the binary devices(15.7%). Overall, this work provided an effective strategy to fabricate highly efficient ternary organic solar cells through design of the novel small molecular donor as the third component.
文摘The Altyn Tagh fault (ATF) extending in NEE—SWW direction lying at the northwestern boundary of Qinghai—Tibet plateau is the largest strike\|slip fault in Central Asia. On the basis of recent geologic mapping and detailed study of lithotectonic characteristics for the paleotectonic units at the two sides of the Altyn Tagh Fault ( Altun Mt. to west and the Qilian Mt. to east ) we propose that the paleotectonic units in the Altun Mt. can be correlated with those in the Qilian Mt. assuming 400km left\|lateral displacement for the Altyn Tagh fault. Natural seismic data across the Altun Mt. indicate that the Altyn Tagh fault is a lithospheric shear fault and the lithospheric shearing is probably related to southward intracontinental oblique subduction of the Tarim terrane beneath the Altun Mt.1\ Comparison of the major paleotectonic units at the two sides of the Altyn Tagh fault\;(1) The Alxa\|Dunhuang Massif:The Alxa massif lying at the southern margin of the Sino\|Korean craton consists mainly of an Early Proterozoic basement including high\|grade and middle\|grade metamorphic rocks, which were intruded by granite at 1719Ma. The Paleozoic passive margin sediments is well developed. In the Altun Mt., the Early Proterozoic and late Archean basement of the Duhuang massif includes high\|grade and middle\|grade metamorphic rocks dating 2789Ma (Sm\|Nd method) and 2405Ma (U\|Pb method).
基金This study was partly supported by research grants from the National Natural Science Foundation of China,Nos.81802251(to KX),81772450(to HYZ)and 81801233(to YQW)the Natural Science Foundation of Zhejiang Province of China,Nos.LQ18H150003(to KX),LY19H150001(to DQC),LQ18H090011(to YQW)and LQ20C200015(to HJ)the Opening Project of Zhejiang Provincial Top Key Discipline of Pharmaceutical Sciences,No.YKFJ3-011(to KX).
文摘The blood-spinal cord barrier plays a vital role in recovery after spinal cord injury.The neurovascular unit concept emphasizes the relationship between nerves and vessels in the brain,while the effect of the blood-spinal cord barrier on the neurovascular unit is rarely reported in spinal cord injury studies.Mouse models of spinal cord injury were established by heavy object impact and then immediately injected with plateletderived growth factor(80μg/kg)at the injury site.Our results showed that after platelet-derived growth factor administration,spinal cord injury,neuronal apoptosis,and blood-spinal cord barrier permeability were reduced,excessive astrocyte proliferation and the autophagyrelated apoptosis signaling pathway were inhibited,collagen synthesis was increased,and mouse locomotor function was improved.In vitro,human umbilical vein endothelial cells were established by exposure to 200μM H2O2.At 2 hours prior to injury,in vitro cell models were treated with 5 ng/mL platelet-derived growth factor.Our results showed that expression of blood-spinal cord barrier-related proteins,including Occludin,Claudin 5,andβ-catenin,was significantly decreased and autophagy was significantly reduced.Additionally,the protective effects of platelet-derived growth factor could be reversed by intraperitoneal injection of 80 mg/kg chloroquine,an autophagy inhibitor,for 3 successive days prior to spinal cord injury.Our findings suggest that platelet-derived growth factor can promote endothelial cell repair by regulating autophagy,improve the function of the blood-spinal cord barrier,and promote the recovery of locomotor function post-spinal cord injury.Approval for animal experiments was obtained from the Animal Ethics Committee,Wenzhou Medical University,China(approval No.wydw2018-0043)in July 2018.
基金This work was supported by the Science and Technology Research Program of Chongqing Municipal Education Commission(Grant No.KJQN201801606)the Natural Sci-ence Foundation Project of CQ CSTC(cstc2017jcyjAX0092)+3 种基金the Scientific Research Program of Chongqing University of Education(Grant Nos.KY201924C,2017XJZDWT02)the Science and Technology Research Program of Chongqing Municipal Education Commission(Grant No.KJ1601410)the Project‘Future School(Infant Education)’of National Center For Schooling Development Programme of China(Grant No.CSDP18FC2202)the Chongqing Electronics Engineering Technology Research Center for Interactive Learning,and the Chongqing Big Data Engineering Laboratory for Children.
文摘Anovel beamforming algorithmnamed Delay Multiply and Sum(DMAS),which excels at enhancing the resolution and contrast of ultrasonic image,has recently been proposed.However,there are nested loops in this algorithm,so the calculation complexity is higher compared to the Delay and Sum(DAS)beamformer which is widely used in industry.Thus,we proposed a simple vector-based method to lower its complexity.The key point is to transform the nested loops into several vector operations,which can be efficiently implemented on many parallel platforms,such as Graphics Processing Units(GPUs),and multi-core Central Processing Units(CPUs).Consequently,we considered to implement this algorithm on such a platform.In order to maximize the use of computing power,we use the GPUs andmulti-core CPUs inmixture.The platform used in our test is a low cost Personal Computer(PC),where a GPU and a multi-core CPU are installed.The results show that the hybrid use of a CPU and a GPU can get a significant performance improvement in comparison with using a GPU or using amulti-core CPU alone.The performance of the hybrid system is increased by about 47%–63%compared to a single GPU.When 32 elements are used in receiving,the fame rate basically can reach 30 fps.In the best case,the frame rate can be increased to 40 fps.
基金supported by the Stem Cell Clinical Research Project of China,No.CMR-20161129-1003Liaoning Province Excellent Talent Program Project of China,No.XLYC1902031the Dalian Innovation Technology Foundation of China,No.2018J11CY025(all to JL).
文摘Biological studies typically rely on a simple monolayer cell culture,which does not reflect the complex functional characteristics of human tissues and organs,or their real response to external stimuli.Microfluidic technology has advantages of high-throughput screening,accurate control of the fluid velocity,low cell consumption,long-term culture,and high integration.By combining the multipotential differentiation of neural stem cells with high throughput and the integrated characteristics of microfluidic technology,an in vitro model of a functionalized neurovascular unit was established using human neural stem cell-derived neurons,astrocytes,oligodendrocytes,and a functional microvascular barrier.The model comprises a multi-layer vertical neural module and vascular module,both of which were connected with a syringe pump.This provides controllable conditions for cell inoculation and nutrient supply,and simultaneously simulates the process of ischemic/hypoxic injury and the process of inflammatory factors in the circulatory system passing through the blood-brain barrier and then acting on the nerve tissue in the brain.The in vitro functionalized neurovascular unit model will be conducive to central nervous system disease research,drug screening,and new drug development.
文摘BACKGROUND The central venous line is an essential component in monitoring and managing critically ill patients.However,it poses patients with increased risks of severe infections with a higher probability of morbidity and mortality.AIM To define the trends of the rates of central line-associated bloodstream infections(CLABSI)over four years,its predicted risk factors,aetiology,and the antimicrobial susceptibility of the isolated pathogens.METHODS The study was a prospective case-control study,performed according to the guidelines of the Center for Disease Control surveillance methodology for CLABSI in patients admitted to the adult intensive care unit(ICU)and auditing the implementation of its prevention bundle.RESULTS Thirty-four CLABSI identified over the study period,giving an average CLABSI rate of 3.2/1000 central line days.The infection's time trend displayed significant reductions over time concomitantly with the CLABSI prevention bundle's reinforcement from 4.7/1000 central line days at the beginning of 2016 to 1.4/1000 central line days by 2018.The most frequently identified pathogens causing CLABSI in our ICU were gram-negative organisms(59%).The most common offending organisms were Acinetobacter,Enterococcus,and Staphylococcus epidermidis,each of them accounted for 5 cases(15%).Multidrug-resistant organisms contributed to 56%of CLABSI.Its rate was higher when using femoral access and longer hospitalisation duration,especially in the ICU.Insertion of the central line in the non-ICU setting was another identified risk factor.CONCLUSION Implementing the prevention bundles reduced CLABSI significantly in our ICU.Implementing the CLABSI prevention bundle is crucial to maintain a substantial reduction in the CLABSI rate in the ICU setting.