A new method, called perturbation-incremental scheme (PIS), is presented to investigate the periodic solution derived from Hopf bifurcation due to time delay in a system of first-order delayed differential equations. ...A new method, called perturbation-incremental scheme (PIS), is presented to investigate the periodic solution derived from Hopf bifurcation due to time delay in a system of first-order delayed differential equations. The method is summarized as three steps, namely linear analysis at critical value, perturba- tion and increment for continuation. The PIS can bypass and avoid the tedious calculation of the center manifold reduction (CMR) and normal form. Meanwhile, the PIS not only inherits the advantages of the method of multiple scales (MMS) but also overcomes the disadvantages of the incremental harmonic balance (IHB) method. Three delayed systems are used as illustrative examples to demonstrate the validity of the present method. The periodic solution derived from the delay-induced Hopf bifurcation is obtained in a closed form by the PIS procedure. The validity of the results is shown by their consis- tency with the numerical simulation. Furthermore, an approximate solution can be calculated in any required accuracy.展开更多
In this paper, a class of discrete vertical and horizontal transmitted disease model under constant vaccination is researched. Under the hypothesis of population being constant size, the model is transformed into a pl...In this paper, a class of discrete vertical and horizontal transmitted disease model under constant vaccination is researched. Under the hypothesis of population being constant size, the model is transformed into a planar map and its equilibrium points and the corresponding eigenvalues are solved out. By discussing the influence of coefficient parameters on the eigenvalues, the hyperbolicity of equilibrium points is determined. By getting the equations of flows on center manifold, the direction and stability of the transcritical bifurcation and flip bifurcation are discussed.展开更多
In this paper, a class of discrete deterministic SIR epidemic model with vertical and horizontal transmission is studied. Based on the population assumed to be a constant size, we transform the discrete SIR epidemic m...In this paper, a class of discrete deterministic SIR epidemic model with vertical and horizontal transmission is studied. Based on the population assumed to be a constant size, we transform the discrete SIR epidemic model into a planar map. Then we find out its equilibrium points and eigenvalues. From discussing the influence of the coefficient parameters effected on the eigenvalues, we give the hyperbolicity of equilibrium points and determine which point is saddle, node or focus as well as their stability. Further, by deriving equations describing flows on the center manifolds, we discuss the transcritical bifurcation at the non-hyperbolic equilibrium point. Finally, we give some numerical simulation examples for illustrating the theoretical analysis and the biological explanation of our theorem.展开更多
基金Supported by National Natural Science Funds for Distinguished Young Scholar (Grant No. 10625211)Key Program of National Natural Science Foundation of China (Grant No. 10532050)+1 种基金Program of Shanghai Subject Chief Scientist (Grant No. 08XD14044)Hong Kong Research Grants Council under CERG (Grant No. CityU 1007/05E)
文摘A new method, called perturbation-incremental scheme (PIS), is presented to investigate the periodic solution derived from Hopf bifurcation due to time delay in a system of first-order delayed differential equations. The method is summarized as three steps, namely linear analysis at critical value, perturba- tion and increment for continuation. The PIS can bypass and avoid the tedious calculation of the center manifold reduction (CMR) and normal form. Meanwhile, the PIS not only inherits the advantages of the method of multiple scales (MMS) but also overcomes the disadvantages of the incremental harmonic balance (IHB) method. Three delayed systems are used as illustrative examples to demonstrate the validity of the present method. The periodic solution derived from the delay-induced Hopf bifurcation is obtained in a closed form by the PIS procedure. The validity of the results is shown by their consis- tency with the numerical simulation. Furthermore, an approximate solution can be calculated in any required accuracy.
文摘In this paper, a class of discrete vertical and horizontal transmitted disease model under constant vaccination is researched. Under the hypothesis of population being constant size, the model is transformed into a planar map and its equilibrium points and the corresponding eigenvalues are solved out. By discussing the influence of coefficient parameters on the eigenvalues, the hyperbolicity of equilibrium points is determined. By getting the equations of flows on center manifold, the direction and stability of the transcritical bifurcation and flip bifurcation are discussed.
文摘In this paper, a class of discrete deterministic SIR epidemic model with vertical and horizontal transmission is studied. Based on the population assumed to be a constant size, we transform the discrete SIR epidemic model into a planar map. Then we find out its equilibrium points and eigenvalues. From discussing the influence of the coefficient parameters effected on the eigenvalues, we give the hyperbolicity of equilibrium points and determine which point is saddle, node or focus as well as their stability. Further, by deriving equations describing flows on the center manifolds, we discuss the transcritical bifurcation at the non-hyperbolic equilibrium point. Finally, we give some numerical simulation examples for illustrating the theoretical analysis and the biological explanation of our theorem.