When the cell width of the incident detonation wave (IDW) is comparable to or larger than the Mach stem height, self-similarity will fail during IDW reflection from a wedge surface. In this paper, the detonation ref...When the cell width of the incident detonation wave (IDW) is comparable to or larger than the Mach stem height, self-similarity will fail during IDW reflection from a wedge surface. In this paper, the detonation reflection from wedges is investigated for the wave dynamic processes occurring in the wave front, including transverse shock motion and detonation cell variations behind the Mach stem. A detailed reaction model is implemented to simulate two-dimensional cellular detonations in stoichiometric mixtures of H2/O2 diluted by Argon. The numerical results show that the transverse waves, which cross the triple point trajectory of Mach reflection, travel along the Mach stem and reflect back from the wedge surface, control the size of the cells in the region swept by the Mach stem. It is the energy carried by these transverse waves that sustains the triple-wave-collision with a higher frequency within the over-driven Mach stem. In some cases, local wave dynamic processes and wave structures play a dominant role in determining the pattern of cellular record, leading to the fact that the cellular patterns after the Mach stem exhibit some peculiar modes.展开更多
The two-dimensional cellular detonation propagating in a channel with area-changing cross section was numerically simulated with the dispersion-controlled dissipative scheme and a detailed chemical reaction model. Eff...The two-dimensional cellular detonation propagating in a channel with area-changing cross section was numerically simulated with the dispersion-controlled dissipative scheme and a detailed chemical reaction model. Effects of the flow ex-pansion and compression on the cellular detonation cell were investigated to illus-trate the mechanism of the transverse wave development and the cellular detona-tion cell evolution. By examining gas composition variations behind the leading shock,the chemical reaction rate,the reaction zone length,and thermodynamic parameters,two kinds of the abnormal detonation waves were identified. To explore their development mechanism,chemical reactions,reflected shocks and rarefac-tion waves were discussed,which interact with each other and affect the cellular detonation in different ways.展开更多
Cylindrical cellular detonation is numerically investigated by solving two- dimensional reactive Euler equations with a finite volume method on a two-dimensional self-adaptive unstructured mesh. The one-step reversibl...Cylindrical cellular detonation is numerically investigated by solving two- dimensional reactive Euler equations with a finite volume method on a two-dimensional self-adaptive unstructured mesh. The one-step reversible chemical reaction model is applied to simplify the control parameters of chemical reaction. Numerical results demonstrate the evolution of cellular cell splitting of cylindrical cellular detonation explored in experimentas. Split of cellular structures shows different features in the near-field and far-field from the initiation zone. Variation of the local curvature is a key factor in the behavior of cell split of cylindrical cellular detonation in propagation. Numerical results show that split of cellular structures comes from the self-organization of transverse waves corresponding to the development of small disturbances along the detonation front related to detonation instability.展开更多
为研究内管扰动对氢气爆轰波传播过程的影响,在光滑管和多尺寸环形管道中完成爆轰实验,以烟膜记录外管内壁和内管内壁胞格结构。结果显示,横波衰减导致爆轰波的胞格结构发生明显改变。当初始压力P_(0)从15 k Pa降到9 k Pa,爆轰波传播距...为研究内管扰动对氢气爆轰波传播过程的影响,在光滑管和多尺寸环形管道中完成爆轰实验,以烟膜记录外管内壁和内管内壁胞格结构。结果显示,横波衰减导致爆轰波的胞格结构发生明显改变。当初始压力P_(0)从15 k Pa降到9 k Pa,爆轰波传播距离变短,从点火端到胞格发生明显变化位置的距离(即L_(λC))减小,光滑管中,L_(λC)^(0)从3671.39 mm减少到3484 mm,环形管中,L_(λC)^(20)(d_(1)=20 mm)从3557.59 mm减少到3000 mm,L_(λC)^(40)(d_(2)=40 mm)从3660.33 mm减少到3420.7 mm。同时可见,相对于光滑管道,同一P_(0)时,环形管道中的L_(λC)减小,说明插入内管后,边界层效应对氢气爆轰波传播产生的影响增大。文中考虑了l_(λC)/d与初始压力P_(0)的关系(l_(λC)表示距点火3000 mm处到内管内壁烟膜上胞格发生明显变化位置的距离),结果显示,当P_(0)增加时,l_(λC)^(60)/d的值变化缓慢,即对于较大的环形管道,爆轰波的传播过程受P_(0)的影响不大,主要受边界层效应的影响。展开更多
The dynamics of frontal and transverse shocks in gaseous detonation waves is a complex phenomenon bringing many difficulties to both numerical and experimental research.Advanced laser-optical visualization of detonati...The dynamics of frontal and transverse shocks in gaseous detonation waves is a complex phenomenon bringing many difficulties to both numerical and experimental research.Advanced laser-optical visualization of detonation structure may provide certain information of its reactive front,but the corresponding lead shock needs to be reconstructed building the complete flow field.Using the multi-layer perceptron(MLP)approach,we propose a shock front reconstruction method which can predict evolution of the lead shock wavefront from the state of the reactive front.The method is verified through the numerical results of one-and two-dimensional unstable detonations based on the reactive Euler equations with a one-step irreversible chemical reaction model.Results show that the accuracy of the proposed method depends on the activation energy of the reactive mixture,which influences prominently the cellular detonation instability and hence,the distortion of the lead shock surface.To select the input variables for training and evaluate their influence on the effectiveness of the proposed method,five groups,one with six variables,and the other with four variables,are tested and analyzed in the MLP model.The trained MLP is tested in the cases with different activation energies,demonstrates the inspiring generalization capability.This paper offers a universal framework for predicting detonation frontal evolution and provides a novel way to interpret numerical and experimental results of detonation waves.展开更多
文摘When the cell width of the incident detonation wave (IDW) is comparable to or larger than the Mach stem height, self-similarity will fail during IDW reflection from a wedge surface. In this paper, the detonation reflection from wedges is investigated for the wave dynamic processes occurring in the wave front, including transverse shock motion and detonation cell variations behind the Mach stem. A detailed reaction model is implemented to simulate two-dimensional cellular detonations in stoichiometric mixtures of H2/O2 diluted by Argon. The numerical results show that the transverse waves, which cross the triple point trajectory of Mach reflection, travel along the Mach stem and reflect back from the wedge surface, control the size of the cells in the region swept by the Mach stem. It is the energy carried by these transverse waves that sustains the triple-wave-collision with a higher frequency within the over-driven Mach stem. In some cases, local wave dynamic processes and wave structures play a dominant role in determining the pattern of cellular record, leading to the fact that the cellular patterns after the Mach stem exhibit some peculiar modes.
文摘The two-dimensional cellular detonation propagating in a channel with area-changing cross section was numerically simulated with the dispersion-controlled dissipative scheme and a detailed chemical reaction model. Effects of the flow ex-pansion and compression on the cellular detonation cell were investigated to illus-trate the mechanism of the transverse wave development and the cellular detona-tion cell evolution. By examining gas composition variations behind the leading shock,the chemical reaction rate,the reaction zone length,and thermodynamic parameters,two kinds of the abnormal detonation waves were identified. To explore their development mechanism,chemical reactions,reflected shocks and rarefac-tion waves were discussed,which interact with each other and affect the cellular detonation in different ways.
基金the National Natural Science Foundation of China(No.90205027)China Postdoctoral Science Foundation(No.2005037444)
文摘Cylindrical cellular detonation is numerically investigated by solving two- dimensional reactive Euler equations with a finite volume method on a two-dimensional self-adaptive unstructured mesh. The one-step reversible chemical reaction model is applied to simplify the control parameters of chemical reaction. Numerical results demonstrate the evolution of cellular cell splitting of cylindrical cellular detonation explored in experimentas. Split of cellular structures shows different features in the near-field and far-field from the initiation zone. Variation of the local curvature is a key factor in the behavior of cell split of cylindrical cellular detonation in propagation. Numerical results show that split of cellular structures comes from the self-organization of transverse waves corresponding to the development of small disturbances along the detonation front related to detonation instability.
基金This work was supported by the National Natural Science Foundation of China(Grant 11822202).
文摘The dynamics of frontal and transverse shocks in gaseous detonation waves is a complex phenomenon bringing many difficulties to both numerical and experimental research.Advanced laser-optical visualization of detonation structure may provide certain information of its reactive front,but the corresponding lead shock needs to be reconstructed building the complete flow field.Using the multi-layer perceptron(MLP)approach,we propose a shock front reconstruction method which can predict evolution of the lead shock wavefront from the state of the reactive front.The method is verified through the numerical results of one-and two-dimensional unstable detonations based on the reactive Euler equations with a one-step irreversible chemical reaction model.Results show that the accuracy of the proposed method depends on the activation energy of the reactive mixture,which influences prominently the cellular detonation instability and hence,the distortion of the lead shock surface.To select the input variables for training and evaluate their influence on the effectiveness of the proposed method,five groups,one with six variables,and the other with four variables,are tested and analyzed in the MLP model.The trained MLP is tested in the cases with different activation energies,demonstrates the inspiring generalization capability.This paper offers a universal framework for predicting detonation frontal evolution and provides a novel way to interpret numerical and experimental results of detonation waves.