A number of superconducting cavities of axis-symmetric geometry have been considered to study the effect in order to achieve the desired performance. It is shown that the multipacting effect is strongly dependent on t...A number of superconducting cavities of axis-symmetric geometry have been considered to study the effect in order to achieve the desired performance. It is shown that the multipacting effect is strongly dependent on the condition of the RF surface and can be suppressed with reconsideration of the geometry. The simulation result is compared with the result of the semi-analytical model in the end.展开更多
High power optically pumped vertical-external-cavity surface-emitting lasers with front and end pump are re- ported. The gain chip consists of 15 repeats of In0.26GaAs/GaAsP0.02 multiple quantum wells and 30 pairs of ...High power optically pumped vertical-external-cavity surface-emitting lasers with front and end pump are re- ported. The gain chip consists of 15 repeats of In0.26GaAs/GaAsP0.02 multiple quantum wells and 30 pairs of Alo.2GaAs/Alo.98GaAs distributed Bragg reflectors. The maximum output power of 3 W, optical-to-optical conversion efficiency of 22.4%, and slope efficiency of 29.8% are obtained with 5-℃ heatsink temperature under the front pump, while the maximum output power of 1.1 W, optical-to-optical conversion efficiency of 23.2%, and slope efficiency of 30.8% are reached with 5-℃ heatsink temperature under the end pump. Influences of thermal effects on the output power of the laser with front and end pump are discussed.展开更多
The loss in efficiency due to shroud leakage or tip clearance flow accounts for a substantial part of the overall losses in turbomachinery. It is important to identify the leakage loss characteristics in order to opti...The loss in efficiency due to shroud leakage or tip clearance flow accounts for a substantial part of the overall losses in turbomachinery. It is important to identify the leakage loss characteristics in order to optimize turbomachinery. At present, little information is available in the open literature concerning the effect of honeycomb seals on the loss characteristics in shroud cavities of an axial turbine, despite of the widespread use of the honeycomb seals. Therefore, interaction between rotor labyrinth seal leakage flow with and without honeycomb facings and main flow is investigated to provide the loss characteristics of the mixing process of the re-entering leakage flow into the main flow. The effects of honeycomb seals on the flow in shroud cavities and interaction with the main flow are analyzed. An additional study on the impact of subtle shroud cavity exit geometry is also presented. The investigation results indicate that the honeycomb seal affects the over tip leakage flow and reduces mixing losses when compared to the solid labyrinth seal. The leakage flow interactions with the main flow have considerably changed the flow fields in the endwall regions. The proposed research reveals the effects of honeycomb seals on the loss characteristics in shroud cavities and the impact of subtle shroud cavity exit geometry, and it is helpful for the design optimization of turbomachinery.展开更多
文摘A number of superconducting cavities of axis-symmetric geometry have been considered to study the effect in order to achieve the desired performance. It is shown that the multipacting effect is strongly dependent on the condition of the RF surface and can be suppressed with reconsideration of the geometry. The simulation result is compared with the result of the semi-analytical model in the end.
基金Project supported by the Chongqing Research Program of Basic Research and Frontier Technology(Grant No.cstc2015jcyj BX0098)the National Natural Science Foundation of China(Grant No.61575011)the Foundation for the Creative Research Groups of Higher Education of Chongqing(Grant No.CXTDX201601016)
文摘High power optically pumped vertical-external-cavity surface-emitting lasers with front and end pump are re- ported. The gain chip consists of 15 repeats of In0.26GaAs/GaAsP0.02 multiple quantum wells and 30 pairs of Alo.2GaAs/Alo.98GaAs distributed Bragg reflectors. The maximum output power of 3 W, optical-to-optical conversion efficiency of 22.4%, and slope efficiency of 29.8% are obtained with 5-℃ heatsink temperature under the front pump, while the maximum output power of 1.1 W, optical-to-optical conversion efficiency of 23.2%, and slope efficiency of 30.8% are reached with 5-℃ heatsink temperature under the end pump. Influences of thermal effects on the output power of the laser with front and end pump are discussed.
基金supported by National Natural Science Foundation of China (Grant No. 50776021)Doctoral Fund of Ministry of Education of China (Grant No. 20092304110004)
文摘The loss in efficiency due to shroud leakage or tip clearance flow accounts for a substantial part of the overall losses in turbomachinery. It is important to identify the leakage loss characteristics in order to optimize turbomachinery. At present, little information is available in the open literature concerning the effect of honeycomb seals on the loss characteristics in shroud cavities of an axial turbine, despite of the widespread use of the honeycomb seals. Therefore, interaction between rotor labyrinth seal leakage flow with and without honeycomb facings and main flow is investigated to provide the loss characteristics of the mixing process of the re-entering leakage flow into the main flow. The effects of honeycomb seals on the flow in shroud cavities and interaction with the main flow are analyzed. An additional study on the impact of subtle shroud cavity exit geometry is also presented. The investigation results indicate that the honeycomb seal affects the over tip leakage flow and reduces mixing losses when compared to the solid labyrinth seal. The leakage flow interactions with the main flow have considerably changed the flow fields in the endwall regions. The proposed research reveals the effects of honeycomb seals on the loss characteristics in shroud cavities and the impact of subtle shroud cavity exit geometry, and it is helpful for the design optimization of turbomachinery.