To reduce the difficulty of material filling into the top region of tooth in hot precision forging of gears using the alternative die designs, relief-cavity designs in different sizes were performed on the top of die ...To reduce the difficulty of material filling into the top region of tooth in hot precision forging of gears using the alternative die designs, relief-cavity designs in different sizes were performed on the top of die tooth. The influences of the conventional process and relief-cavity designs on corner filling, workpiece stress, die stress, forming load and material utilization were examined. Finite element simulation for tooth forming, die stress and forming load using the four designs was performed. The material utilization was further considered, and the optimal design was determined. The tooth form and forming load in forging trials ensured the validity of FE simulation. Tooth accuracy was inspected by video measuring machine(VMM), which shows the hot forged accuracy achieves the level of rough machining of gear teeth. The effects of friction on mode of metal flow and strain distribution were also discussed.展开更多
Aimed at the optimal analysis and processing technology of die cavity of special-shaped products extrusion, by numerical analysis of trigonometric interpolation and Conformal Mapping theory, on the non-circle cross-se...Aimed at the optimal analysis and processing technology of die cavity of special-shaped products extrusion, by numerical analysis of trigonometric interpolation and Conformal Mapping theory, on the non-circle cross-section of special-shaped products, the conformal mapping function can be set up to translate the cross-section region into unit dish region, over numerical finite interpolation points between even and odd. Products extrusion forming can be turned into two-dimension problem, and plastic stream function can be deduced, as well as the mathematical model of the die cavity surface is established based on deferent kinds of vertical curve. By applying Upper-bound Principle, the vertical curves and related parameters of die cavity are optimized. Combining with electrical discharge machining (EDM) process and numerical control (NC) milling machine technology, the optimal processing of die cavity can be realized. Taking ellipse-shaped products as an instance, the optimal analysis and processing of die cavity including extruding experiment are carried out.展开更多
基金Project(51375042)supported by the National Natural Science Foundation of ChinaProject supported by Beijing Laboratory of Modern Transport Metal Materials and Processing Technology,China
文摘To reduce the difficulty of material filling into the top region of tooth in hot precision forging of gears using the alternative die designs, relief-cavity designs in different sizes were performed on the top of die tooth. The influences of the conventional process and relief-cavity designs on corner filling, workpiece stress, die stress, forming load and material utilization were examined. Finite element simulation for tooth forming, die stress and forming load using the four designs was performed. The material utilization was further considered, and the optimal design was determined. The tooth form and forming load in forging trials ensured the validity of FE simulation. Tooth accuracy was inspected by video measuring machine(VMM), which shows the hot forged accuracy achieves the level of rough machining of gear teeth. The effects of friction on mode of metal flow and strain distribution were also discussed.
基金Porject(50075076) supported by the National Natural Science Foundation of ChinaPorject(2007XM036) supported by Science and Technology of Beijing Jiaotong Uniersity, China
文摘Aimed at the optimal analysis and processing technology of die cavity of special-shaped products extrusion, by numerical analysis of trigonometric interpolation and Conformal Mapping theory, on the non-circle cross-section of special-shaped products, the conformal mapping function can be set up to translate the cross-section region into unit dish region, over numerical finite interpolation points between even and odd. Products extrusion forming can be turned into two-dimension problem, and plastic stream function can be deduced, as well as the mathematical model of the die cavity surface is established based on deferent kinds of vertical curve. By applying Upper-bound Principle, the vertical curves and related parameters of die cavity are optimized. Combining with electrical discharge machining (EDM) process and numerical control (NC) milling machine technology, the optimal processing of die cavity can be realized. Taking ellipse-shaped products as an instance, the optimal analysis and processing of die cavity including extruding experiment are carried out.