Carbon dioxide capture,utilization and storage(CCUS)eincluding conversion to valuable chemicals-is a challenging contemporary issue having multi-facets.The prospect to utilize carbon dioxide(CO_(2))as a feedstock for ...Carbon dioxide capture,utilization and storage(CCUS)eincluding conversion to valuable chemicals-is a challenging contemporary issue having multi-facets.The prospect to utilize carbon dioxide(CO_(2))as a feedstock for synthetic applications in chemical and fuel industries-through carboxylation and reduction reactions-is the subject of this review.Current statute of the heterogeneously catalyzed hydrogenation,as well as the photocatalytic and electrocatalytic activations of conversion of CO_(2) to value-added chemicals is overviewed.Envisaging CO_(2) as a viable alternative to natural gas and oil as carbon resource for the chemical supply chain,three stages of development;namely,(i)existing mature technologies(such as urea production),(ii)emerging technologies(such as formic acid or other single carbon(C1)chemicals manufacture)and(iii)innovative explorations(such as electrocatalytic ethylene production)have been identified and highlighted.A unique aspect of this review is the exploitations of reactions of CO2 ewhich stems from existing petrochemical plants-with the commodity petrochemicals(such as,methanol,ethylene and ethylene oxide)produced at the same or nearby complex in order to obtain value-added products while contributing also to CO_(2) fixation simultaneously.Exemplifying worldwide ethylene oxide facilities,it is recognized that they produce about 3 million tons of CO2 annually.Such a CO_(2) resource,which is already separated in pure form as a requirement of the process,should best be converted to a value-added chemical there avoiding current practice of discharging to the atmosphere.The potential utilization of CO_(2),captured at power plants,should also been taken into consideration for sustainability.This CO_(2) source,which is potentially a raw material for the chemical industry,will be available at sufficient quality and at gigantic quantity upon realization of on-going tangible capture projects.Products resulting from carboxylation reactions are obvious conversions.In addition,provided that enough s展开更多
Environmentally benign carbon dioxide offers significant potential in its supercritical fluid phase to replace current reliance on a range of hazardous, relatively expensive and environmentally damaging organic solven...Environmentally benign carbon dioxide offers significant potential in its supercritical fluid phase to replace current reliance on a range of hazardous, relatively expensive and environmentally damaging organic solvents that are used on an extensive global basis. The unique combination of the physical properties of supercritical fluids are being exploited and further researched to continue the development and establishment of high efficiency, compact plant to provide energy and water efficient manufacturing processes. This mini-review is focused on the use and potential applications of supercritical fluid carbon dioxide for a selected range of key and emerging industrial processes as a sustainable alternative to totally eliminate or greatly reduce the requirement of numerous conventional organic solvents. Examples of the industries include: chemical extraction and purification, synthetic chemical reactions including polymerization and inorganic catalytic processes. Biochemical reactions involving enzymes, particle size engineering, textile dyeing and advanced material manufacture provide further illustrations of vital industrial activities where supercritical fluid technology processes are being implemented or developed. Some aspects relating to the economics of sustainable supercritical fluid carbon dioxide processes are also considered.展开更多
The synthesis of degradable polymers with easy-to-break in-chain carbon-oxygen bonds has attracted much attention.This minireview introduces the synthesis of a variety of degradable polymers from the(co)polymerization...The synthesis of degradable polymers with easy-to-break in-chain carbon-oxygen bonds has attracted much attention.This minireview introduces the synthesis of a variety of degradable polymers from the(co)polymerizations of several typical oxygenated monomers such as epoxides,cyclic carbonates,cyclic esters,carbon dioxide(CO_(2)),carbonyl sulfide(COS),and cyclic anhydrides.We highlight the catalysts and mechanisms for these(co)polymerizations.The ring-opening copolymerization of five-membered carbonate with cyclic anhydride or COS has been introduced.We also highlight the synthesis of block copolymers and cyclic copolymers with well-defined sequences by the method of growing center switching.We hope that these new polymerization systems can provide new ideas for the development of degradable low-carbon polymers in the future.展开更多
基金Authors gratefully acknowledge Hasan Arslan,Senior Process Consultant,PTTGC America,for the hindsight provided for matured and developing petrochemical processes.
文摘Carbon dioxide capture,utilization and storage(CCUS)eincluding conversion to valuable chemicals-is a challenging contemporary issue having multi-facets.The prospect to utilize carbon dioxide(CO_(2))as a feedstock for synthetic applications in chemical and fuel industries-through carboxylation and reduction reactions-is the subject of this review.Current statute of the heterogeneously catalyzed hydrogenation,as well as the photocatalytic and electrocatalytic activations of conversion of CO_(2) to value-added chemicals is overviewed.Envisaging CO_(2) as a viable alternative to natural gas and oil as carbon resource for the chemical supply chain,three stages of development;namely,(i)existing mature technologies(such as urea production),(ii)emerging technologies(such as formic acid or other single carbon(C1)chemicals manufacture)and(iii)innovative explorations(such as electrocatalytic ethylene production)have been identified and highlighted.A unique aspect of this review is the exploitations of reactions of CO2 ewhich stems from existing petrochemical plants-with the commodity petrochemicals(such as,methanol,ethylene and ethylene oxide)produced at the same or nearby complex in order to obtain value-added products while contributing also to CO_(2) fixation simultaneously.Exemplifying worldwide ethylene oxide facilities,it is recognized that they produce about 3 million tons of CO2 annually.Such a CO_(2) resource,which is already separated in pure form as a requirement of the process,should best be converted to a value-added chemical there avoiding current practice of discharging to the atmosphere.The potential utilization of CO_(2),captured at power plants,should also been taken into consideration for sustainability.This CO_(2) source,which is potentially a raw material for the chemical industry,will be available at sufficient quality and at gigantic quantity upon realization of on-going tangible capture projects.Products resulting from carboxylation reactions are obvious conversions.In addition,provided that enough s
文摘Environmentally benign carbon dioxide offers significant potential in its supercritical fluid phase to replace current reliance on a range of hazardous, relatively expensive and environmentally damaging organic solvents that are used on an extensive global basis. The unique combination of the physical properties of supercritical fluids are being exploited and further researched to continue the development and establishment of high efficiency, compact plant to provide energy and water efficient manufacturing processes. This mini-review is focused on the use and potential applications of supercritical fluid carbon dioxide for a selected range of key and emerging industrial processes as a sustainable alternative to totally eliminate or greatly reduce the requirement of numerous conventional organic solvents. Examples of the industries include: chemical extraction and purification, synthetic chemical reactions including polymerization and inorganic catalytic processes. Biochemical reactions involving enzymes, particle size engineering, textile dyeing and advanced material manufacture provide further illustrations of vital industrial activities where supercritical fluid technology processes are being implemented or developed. Some aspects relating to the economics of sustainable supercritical fluid carbon dioxide processes are also considered.
基金the National Science Foundation of China(Nos.52203129,51973190)Zhejiang Provincial Department of Science and Technology(No.2020R52006).
文摘The synthesis of degradable polymers with easy-to-break in-chain carbon-oxygen bonds has attracted much attention.This minireview introduces the synthesis of a variety of degradable polymers from the(co)polymerizations of several typical oxygenated monomers such as epoxides,cyclic carbonates,cyclic esters,carbon dioxide(CO_(2)),carbonyl sulfide(COS),and cyclic anhydrides.We highlight the catalysts and mechanisms for these(co)polymerizations.The ring-opening copolymerization of five-membered carbonate with cyclic anhydride or COS has been introduced.We also highlight the synthesis of block copolymers and cyclic copolymers with well-defined sequences by the method of growing center switching.We hope that these new polymerization systems can provide new ideas for the development of degradable low-carbon polymers in the future.