Melt-cast explosives are the most widely used energetic materials in military composite explosives,researchers have been unremittingly exploring high-energy and insensitive melt-cast explosives.In this work,a series o...Melt-cast explosives are the most widely used energetic materials in military composite explosives,researchers have been unremittingly exploring high-energy and insensitive melt-cast explosives.In this work,a series of dinitrophenyl-oxadiazole compounds were designed and prepared.These compounds have an ideal low melting point(80-97℃),good detonation performance(detonation velocity D=6455-6971 m/s,detonation pressure P=18-19 GPa)and extreme insensitive nature(impact sensitivity≥60 J,friction sensitivity>360 N).All these compounds were well characterized by nuclear magnetic resonance,fourier transform infrared spectroscopy,elemental analysis.Compounds 2,3 were unambiguously confirmed by X-ray single crystal diffraction analysis.As a result,their overall properties are superior to traditional melt-cast explosives trinitrotoluene(TNT)and dinitroanisole(DNAN)which may have excellent potential applications in insensitive melt-cast explosives.展开更多
Accurately predicting reactive flow is a challenge when characterizing an explosive under external shock stimuli as the shock initiation time is on the order of a microsecond.The present study constructs a new Ignitio...Accurately predicting reactive flow is a challenge when characterizing an explosive under external shock stimuli as the shock initiation time is on the order of a microsecond.The present study constructs a new Ignition-Growth reaction rate model,which can describe the shock initiation processes of explosives with different initial densities,particle sizes and loading pressures by only one set of model parameters.Compared with the Lee-Tarver reaction rate model,the new Ignition-Growth reaction rate model describes better the shock initiation process of explosives and requires fewer model parameters.Moreover,the shock initiation of a 2,4-Dinitroanisole(DNAN)-based melt-cast explosive RDA-2(DNAN/HMX(octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazoncine)/aluminum)are investigated both experimentally and numerically.A series of shock initiation experiments is performed with manganin piezoresistive pressure gauges and corresponding numerical simulations are carried out with the new Ignition-Growth reaction rate model.The RDA-2 explosive is found to have higher critical initiation pressure and lower shock sensitivity than traditional explosives(such as the Comp.B explosive).The calibrated reaction rate model parameters of RDA-2 could provide numerical basis for its further application.展开更多
A melt-cast Duan-Zhang-Kim(DZK)mesoscopic reaction rate model is developed for the shock initiation of melt-cast explosives based on the pore collapse hot-spot ignition mechanism.A series of shock initiation experimen...A melt-cast Duan-Zhang-Kim(DZK)mesoscopic reaction rate model is developed for the shock initiation of melt-cast explosives based on the pore collapse hot-spot ignition mechanism.A series of shock initiation experiments was performed for the Comp B melt-cast explosive to estimate effects of the loading pressure and the particle size of granular explosive component,and the mesoscopic model is validated against the experimental data.Further numerical simulations indicate that the initial density and formula proportion greatly affect the hot-spot ignition of melt-cast explosives.展开更多
基金the projects of NSFC(Grant No.22175025)for their generous financial support。
文摘Melt-cast explosives are the most widely used energetic materials in military composite explosives,researchers have been unremittingly exploring high-energy and insensitive melt-cast explosives.In this work,a series of dinitrophenyl-oxadiazole compounds were designed and prepared.These compounds have an ideal low melting point(80-97℃),good detonation performance(detonation velocity D=6455-6971 m/s,detonation pressure P=18-19 GPa)and extreme insensitive nature(impact sensitivity≥60 J,friction sensitivity>360 N).All these compounds were well characterized by nuclear magnetic resonance,fourier transform infrared spectroscopy,elemental analysis.Compounds 2,3 were unambiguously confirmed by X-ray single crystal diffraction analysis.As a result,their overall properties are superior to traditional melt-cast explosives trinitrotoluene(TNT)and dinitroanisole(DNAN)which may have excellent potential applications in insensitive melt-cast explosives.
基金supported by the Innovative Group of Material and Structure Impact Dynamics(Grant No.11521062)。
文摘Accurately predicting reactive flow is a challenge when characterizing an explosive under external shock stimuli as the shock initiation time is on the order of a microsecond.The present study constructs a new Ignition-Growth reaction rate model,which can describe the shock initiation processes of explosives with different initial densities,particle sizes and loading pressures by only one set of model parameters.Compared with the Lee-Tarver reaction rate model,the new Ignition-Growth reaction rate model describes better the shock initiation process of explosives and requires fewer model parameters.Moreover,the shock initiation of a 2,4-Dinitroanisole(DNAN)-based melt-cast explosive RDA-2(DNAN/HMX(octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazoncine)/aluminum)are investigated both experimentally and numerically.A series of shock initiation experiments is performed with manganin piezoresistive pressure gauges and corresponding numerical simulations are carried out with the new Ignition-Growth reaction rate model.The RDA-2 explosive is found to have higher critical initiation pressure and lower shock sensitivity than traditional explosives(such as the Comp.B explosive).The calibrated reaction rate model parameters of RDA-2 could provide numerical basis for its further application.
基金the National Natural Science Foundation of China(Grant No.11772056)the NSAF Joint Fund(Grants No.U1630113)and the Innovative Group of Material and Structure Impact Dynamics(Grant No.11521062)。
文摘A melt-cast Duan-Zhang-Kim(DZK)mesoscopic reaction rate model is developed for the shock initiation of melt-cast explosives based on the pore collapse hot-spot ignition mechanism.A series of shock initiation experiments was performed for the Comp B melt-cast explosive to estimate effects of the loading pressure and the particle size of granular explosive component,and the mesoscopic model is validated against the experimental data.Further numerical simulations indicate that the initial density and formula proportion greatly affect the hot-spot ignition of melt-cast explosives.