A differential cross-coupled regulated cascode(RGC)transimpedance amplifier(TIA)is proposed. The theory of multi-stage common-source(CS) configuration as an auxiliary amplifier to enhance the bandwidth and output impe...A differential cross-coupled regulated cascode(RGC)transimpedance amplifier(TIA)is proposed. The theory of multi-stage common-source(CS) configuration as an auxiliary amplifier to enhance the bandwidth and output impedance of RGC topology is analyzed. Additionally, negative Miller capacitance and shunt active inductor compensation are exploited to further expand the bandwidth. The proposed RGC TIA is simulated based on UMC 0.18 μm standard CMOS process. The simulation results demonstrate that the proposed TIA has a high transimpedance of 60.5 d B?, and a-3 d B bandwidth of 5.4 GHz is achieved for 0.5 p F input capacitance. The average equivalent input noise current spectral density is about 20 p A/Hz^(1/2) in the interested frequency, and the TIA consumes 20 m W DC power under 1.8 V supply voltage. The voltage swing is 460 m V pp, and the saturation input current is 500 μA.展开更多
This work presents a high-gain broadband inverter-based cascode transimpedance amplifier fabricated in a 65-nm CMOS process.Multiple bandwidth enhancement techniques,including input bonding wire,input series on-chip i...This work presents a high-gain broadband inverter-based cascode transimpedance amplifier fabricated in a 65-nm CMOS process.Multiple bandwidth enhancement techniques,including input bonding wire,input series on-chip inductive peak-ing and negative capacitance compensation,are adopted to overcome the large off-chip photodiode capacitive loading and the miller capacitance of the input device,achieving an overall bandwidth enhancement ratio of 8.5.The electrical measure-ment shows TIA achieves 58 dBΩup to 12.7 GHz with a 180-fF off-chip photodetector.The optical measurement demonstrates a clear open eye of 20 Gb/s.The TIA dissipates 4 mW from a 1.2-V supply voltage.展开更多
文摘设计了一种基于CSMC 0.25μm CMOS工艺的高性能全差分输入的折叠式共源共栅运算放大器电路。该电路由折叠式共源共栅运放模块、差分输出模块与共模负反馈模块组成,具有单位增益带宽高、稳定性好、开环增益大等优点。通过Cadance对此电路进行进一步的设计优化与仿真,表明该电路在5 V电源电压下,直流开环增益为115 d B、单位增益带宽为30 MHz、共模抑制比为185 d B、相位裕度为66°,达到了预期的设计目标。
基金Supported by the National Natural Science Foundation of China(No.61474081)
文摘A differential cross-coupled regulated cascode(RGC)transimpedance amplifier(TIA)is proposed. The theory of multi-stage common-source(CS) configuration as an auxiliary amplifier to enhance the bandwidth and output impedance of RGC topology is analyzed. Additionally, negative Miller capacitance and shunt active inductor compensation are exploited to further expand the bandwidth. The proposed RGC TIA is simulated based on UMC 0.18 μm standard CMOS process. The simulation results demonstrate that the proposed TIA has a high transimpedance of 60.5 d B?, and a-3 d B bandwidth of 5.4 GHz is achieved for 0.5 p F input capacitance. The average equivalent input noise current spectral density is about 20 p A/Hz^(1/2) in the interested frequency, and the TIA consumes 20 m W DC power under 1.8 V supply voltage. The voltage swing is 460 m V pp, and the saturation input current is 500 μA.
基金supported in part by the National NaturalScience Foundation of China under Grant 62074074in part by Natural Science Foundation of Guangdong Province under Grant 2021A1515011266in part by the Science and Technology Plan of Shenzhen under Grants JCYJ20190809142017428 and JCYJ20200109141225025。
文摘This work presents a high-gain broadband inverter-based cascode transimpedance amplifier fabricated in a 65-nm CMOS process.Multiple bandwidth enhancement techniques,including input bonding wire,input series on-chip inductive peak-ing and negative capacitance compensation,are adopted to overcome the large off-chip photodiode capacitive loading and the miller capacitance of the input device,achieving an overall bandwidth enhancement ratio of 8.5.The electrical measure-ment shows TIA achieves 58 dBΩup to 12.7 GHz with a 180-fF off-chip photodetector.The optical measurement demonstrates a clear open eye of 20 Gb/s.The TIA dissipates 4 mW from a 1.2-V supply voltage.