Accelerated carbonation experiments about the development of carbonation rates of ordinary Portland cement concrete under different artificial climates were carried out. Six water cement ratios and six climate conditi...Accelerated carbonation experiments about the development of carbonation rates of ordinary Portland cement concrete under different artificial climates were carried out. Six water cement ratios and six climate condition combinations of temperature and relative humidity were used. Results indicate that changes of concrete carbonation rate with environmental temperature agree the Arrhenius law well, which suggests concrete carbonation rate has obvious dependence on temperature. The higher the temperature is, the more quickly the concrete carbonates, and at the same time it is also affected by environmental relative humidity. Thereafter, the apparent activation energy Ea of concrete carbonation reaction was obtained, ranging from 16.8 to 20.6 kJ/mol corresponding 0.35-0.74 water cement ratio, and lower water cement ratio will cause the apparent activation energy increase. Concrete carbonation rates will increase 1.1-1.69 times as temperature increase every 10 ℃ at the temperature range of 10 to 60 ℃.展开更多
The single influence of capillary porosity and coupling effects of absolute basicity and capillary porosity on concrete carbonation were investigated. The experimental results showed that carbonation rate of concrete ...The single influence of capillary porosity and coupling effects of absolute basicity and capillary porosity on concrete carbonation were investigated. The experimental results showed that carbonation rate of concrete at a given absolute basicity (AB) increased moderately with the increase of the porosity ranging from 6.2% to 9.25%, and increased rapidly with porosity from 9.25% to 12.8%.The coupling effect mainly embodied in disappeared mutation point of capillary porosity, and the distributing regions of carbonation depth were clearly partitioned in the coupling influence of absolute basicity and capillary porosity. A design method on carbonation related durability of concrete based on the coupling effects was proposed.展开更多
基金Funded by National Natural Science Fundation of China(No.51178455)
文摘Accelerated carbonation experiments about the development of carbonation rates of ordinary Portland cement concrete under different artificial climates were carried out. Six water cement ratios and six climate condition combinations of temperature and relative humidity were used. Results indicate that changes of concrete carbonation rate with environmental temperature agree the Arrhenius law well, which suggests concrete carbonation rate has obvious dependence on temperature. The higher the temperature is, the more quickly the concrete carbonates, and at the same time it is also affected by environmental relative humidity. Thereafter, the apparent activation energy Ea of concrete carbonation reaction was obtained, ranging from 16.8 to 20.6 kJ/mol corresponding 0.35-0.74 water cement ratio, and lower water cement ratio will cause the apparent activation energy increase. Concrete carbonation rates will increase 1.1-1.69 times as temperature increase every 10 ℃ at the temperature range of 10 to 60 ℃.
基金Funded by the National Basic Research Program of China(No.2009CB623200)Nanjing Key Construction Project (No.7612005822)
文摘The single influence of capillary porosity and coupling effects of absolute basicity and capillary porosity on concrete carbonation were investigated. The experimental results showed that carbonation rate of concrete at a given absolute basicity (AB) increased moderately with the increase of the porosity ranging from 6.2% to 9.25%, and increased rapidly with porosity from 9.25% to 12.8%.The coupling effect mainly embodied in disappeared mutation point of capillary porosity, and the distributing regions of carbonation depth were clearly partitioned in the coupling influence of absolute basicity and capillary porosity. A design method on carbonation related durability of concrete based on the coupling effects was proposed.