A novel sensor for ocean electric field testing has been fabricated by polyacrylonitrile-based on carbon fibers with electro-chemical oxidation.The surface profile characteristics of the carbon fibers were characteriz...A novel sensor for ocean electric field testing has been fabricated by polyacrylonitrile-based on carbon fibers with electro-chemical oxidation.The surface profile characteristics of the carbon fibers were characterized by scanning electron microscope,Fourier transform infrared spectra and contact angle.Cyclic voltammetry and Tafel curves have been used to study its electro-chemical performances.Two identical electrodes in sea water as the electric field sensor will swiftly respond to applied electric field which causes positive and negative ions to move in opposite direction,resulting in a electric potential difference(ΔE).Test result indicates that the offset potential is typically below 1 m V with a drift of 60-170μVd^-1.Typical self noise level is 1.07 nV√Hz^(1/2)@1 Hz.The electric field response indicates that the modified electrode pair shows better response to AC sine signal of amplitude and frequency(5 mV and 1 mHz)respectively than its blank.The electric field response model of the modified electrodes is creatively presented according to its electric double layer capacitance and Faraday pseudo-capacitance.Many advantages of the carbon fiber electric field electrode will make it have potential application prospect.展开更多
For addressing the critical problems in current collectors in the aluminium batteries,a variety of carbonbased current collectors,including carbon fiber textiles and three-dimensional(3D)biomass-derivative carbon(BDC)...For addressing the critical problems in current collectors in the aluminium batteries,a variety of carbonbased current collectors,including carbon fiber textiles and three-dimensional(3D)biomass-derivative carbon(BDC)networks,are employed for serving as lightweight non-metal current collectors.The results indicate that all the carbon-based current collectors have electrochemical stability in the acidic electrolyte environments.In the assembled aluminium batteries with all-carbon positive electrodes,thermal annealing process on the carbon-based current collectors has substantially promoted the entire electrochemical energy storage performance.Additionally,both the structure configuration and chemical components of the current collectors have also great impact on the rate capability and cycling stability,implying that the 3D BDC networks are more favorable to offer promoted energy storage capability.Implication of the results from suggests that the carbon-based current collectors and all-carbon positive electrodes are able to deliver more advantages in energy storage behaviors in comparison with the traditional positive electrodes with metal Mo current collectors.Such novel strategy promises a new route for fabricating highperformance positive electrodes for stable advanced aluminium batteries.展开更多
利用硅烷偶联剂作为改性碳纤维的接枝材料,探索γ-氨乙基氨丙基三甲氧基硅烷(KH-792)改性前后碳纤维电化学性能和电场响应性能的变化。结果表明,改性后碳纤维电极的电化学性能显著提升,比容量为105.96 F/g,是未改性电极的4.58倍,未改性...利用硅烷偶联剂作为改性碳纤维的接枝材料,探索γ-氨乙基氨丙基三甲氧基硅烷(KH-792)改性前后碳纤维电化学性能和电场响应性能的变化。结果表明,改性后碳纤维电极的电化学性能显著提升,比容量为105.96 F/g,是未改性电极的4.58倍,未改性电极存在的低频容抗现象也得到改善。改性后,电极对的极差稳定性提高,日漂移量最低10μV/d,能够很好地响应1 m V/1 m Hz电场信号,电极对的电化学自噪声可低至1.7 n V/rtHz@1 Hz,与未改性电极对的自噪声相比明显降低。展开更多
基金supported by the National Defense Science and Technology Innovation Zone Project(No.18-H863-05-ZT-001-018-09)
文摘A novel sensor for ocean electric field testing has been fabricated by polyacrylonitrile-based on carbon fibers with electro-chemical oxidation.The surface profile characteristics of the carbon fibers were characterized by scanning electron microscope,Fourier transform infrared spectra and contact angle.Cyclic voltammetry and Tafel curves have been used to study its electro-chemical performances.Two identical electrodes in sea water as the electric field sensor will swiftly respond to applied electric field which causes positive and negative ions to move in opposite direction,resulting in a electric potential difference(ΔE).Test result indicates that the offset potential is typically below 1 m V with a drift of 60-170μVd^-1.Typical self noise level is 1.07 nV√Hz^(1/2)@1 Hz.The electric field response indicates that the modified electrode pair shows better response to AC sine signal of amplitude and frequency(5 mV and 1 mHz)respectively than its blank.The electric field response model of the modified electrodes is creatively presented according to its electric double layer capacitance and Faraday pseudo-capacitance.Many advantages of the carbon fiber electric field electrode will make it have potential application prospect.
基金Financial support from National Key R&D Program of China(Grant No.2018YFB0104400)the National Natural Science Foundation of China(Grant Nos.11672341,11572002 and 51874019)+2 种基金Innovative Research Groups of the National Natural Science Foundation of China(Grant No.11521202)National Materials Genome Project(Grant No.2016YFB0700600)Beijing Natural Science Foundation(Grant Nos.16L00001 and 2182065).
文摘For addressing the critical problems in current collectors in the aluminium batteries,a variety of carbonbased current collectors,including carbon fiber textiles and three-dimensional(3D)biomass-derivative carbon(BDC)networks,are employed for serving as lightweight non-metal current collectors.The results indicate that all the carbon-based current collectors have electrochemical stability in the acidic electrolyte environments.In the assembled aluminium batteries with all-carbon positive electrodes,thermal annealing process on the carbon-based current collectors has substantially promoted the entire electrochemical energy storage performance.Additionally,both the structure configuration and chemical components of the current collectors have also great impact on the rate capability and cycling stability,implying that the 3D BDC networks are more favorable to offer promoted energy storage capability.Implication of the results from suggests that the carbon-based current collectors and all-carbon positive electrodes are able to deliver more advantages in energy storage behaviors in comparison with the traditional positive electrodes with metal Mo current collectors.Such novel strategy promises a new route for fabricating highperformance positive electrodes for stable advanced aluminium batteries.
文摘利用硅烷偶联剂作为改性碳纤维的接枝材料,探索γ-氨乙基氨丙基三甲氧基硅烷(KH-792)改性前后碳纤维电化学性能和电场响应性能的变化。结果表明,改性后碳纤维电极的电化学性能显著提升,比容量为105.96 F/g,是未改性电极的4.58倍,未改性电极存在的低频容抗现象也得到改善。改性后,电极对的极差稳定性提高,日漂移量最低10μV/d,能够很好地响应1 m V/1 m Hz电场信号,电极对的电化学自噪声可低至1.7 n V/rtHz@1 Hz,与未改性电极对的自噪声相比明显降低。