Background Our previous study has reported that supplementation of oligosaccharide-based polymer enhances gut health and disease resistance of pigs infected with enterotoxigenic E.coli(ETEC)F18 in a manner similar to ...Background Our previous study has reported that supplementation of oligosaccharide-based polymer enhances gut health and disease resistance of pigs infected with enterotoxigenic E.coli(ETEC)F18 in a manner similar to carbadox.The objective of this study was to investigate the impacts of oligosaccharide-based polymer or antibiotic on the host metabolic profiles and colon microbiota of weaned pigs experimentally infected with ETEC F18.Results Multivariate analysis highlighted the differences in the metabolic profiles of serum and colon digesta which were predominantly found between pigs supplemented with oligosaccharide-based polymer and antibiotic.The relative abundance of metabolic markers of immune responses and nutrient metabolisms,such as amino acids and carbohydrates,were significantly differentiated between the oligosaccharide-based polymer and antibiotic groups(q<0.2 and fold change>2.0).In addition,pigs in antibiotic had a reduced(P<0.05)relative abundance of Lachnospiraceae and Lactobacillaceae,whereas had greater(P<0.05)Clostridiaceae and Streptococcaceae in the colon digesta on d 11 post-inoculation(PI)compared with d 5 PI.Conclusions The impact of oligosaccharide-based polymer on the metabolic and microbial profiles of pigs is not fully understood,and further exploration is needed.However,current research suggest that various mechanisms are involved in the enhanced disease resistance and performance in ETEC-challenged pigs by supplementing this polymer.展开更多
Background:Our previous study has shown that supplementation of trace amounts of antibiotic exacerbated the detrimental effects of enterotoxigenic E.coli(ETEC)infection and delayed the recovery of pigs that may be ass...Background:Our previous study has shown that supplementation of trace amounts of antibiotic exacerbated the detrimental effects of enterotoxigenic E.coli(ETEC)infection and delayed the recovery of pigs that may be associated with modified metabolites and metabolic pathways.Therefore,the objective of this study was to explore the impacts of trace levels of antibiotic(carbadox)on host metabolic profiles and colon microbiota of weaned pigs experimentally infected with ETEC F18.Results:The multivariate analysis highlighted a distinct metabolomic profile of serum and colon digesta between trace amounts of antibiotic(TRA;0.5 mg/kg carbadox)and label-recommended dose antibiotic(REC;50 mg/kg carbadox)on d 5 post-inoculation(PI).The relative abundance of metabolomic markers of amino acids,carbohydrates,and purine metabolism were significantly differentiated between the TRA and REC groups(q<0.2).In addition,pigs in REC group had the highest(P<0.05)relative abundance of Lactobacillaceae and tended to have increased(P<0.10)relative abundance of Lachnospiraceae in the colon digesta on d 5 PI.On d 11 PI,pigs in REC had greater(P<0.05)relative abundance of Clostridiaceae compared with other groups,whereas had reduced(P<0.05)relative abundance of Prevotellaceae than pigs in control group.Conclusions:Trace amounts of antibiotic resulted in differential metabolites and metabolic pathways that may be associated with its slow responses against ETEC F18 infection.The altered gut microbiota profiles by labelrecommended dose antibiotic may contribute to the promotion of disease resistance in weaned pigs.展开更多
基金supported by Pancosma SA,Geneva,Switzerland,Jastro & Shields Graduate Research Awardthe United States Department of Agriculture (USDA) National Institute of Food and Agriculture (NIFA),multistate projects W4002 and NC1202
文摘Background Our previous study has reported that supplementation of oligosaccharide-based polymer enhances gut health and disease resistance of pigs infected with enterotoxigenic E.coli(ETEC)F18 in a manner similar to carbadox.The objective of this study was to investigate the impacts of oligosaccharide-based polymer or antibiotic on the host metabolic profiles and colon microbiota of weaned pigs experimentally infected with ETEC F18.Results Multivariate analysis highlighted the differences in the metabolic profiles of serum and colon digesta which were predominantly found between pigs supplemented with oligosaccharide-based polymer and antibiotic.The relative abundance of metabolic markers of immune responses and nutrient metabolisms,such as amino acids and carbohydrates,were significantly differentiated between the oligosaccharide-based polymer and antibiotic groups(q<0.2 and fold change>2.0).In addition,pigs in antibiotic had a reduced(P<0.05)relative abundance of Lachnospiraceae and Lactobacillaceae,whereas had greater(P<0.05)Clostridiaceae and Streptococcaceae in the colon digesta on d 11 post-inoculation(PI)compared with d 5 PI.Conclusions The impact of oligosaccharide-based polymer on the metabolic and microbial profiles of pigs is not fully understood,and further exploration is needed.However,current research suggest that various mechanisms are involved in the enhanced disease resistance and performance in ETEC-challenged pigs by supplementing this polymer.
基金supported by the United States Department of Agriculture(USDA)National Institute of Food and Agriculture(NIFA),multistate projects W4002 and NC1202.
文摘Background:Our previous study has shown that supplementation of trace amounts of antibiotic exacerbated the detrimental effects of enterotoxigenic E.coli(ETEC)infection and delayed the recovery of pigs that may be associated with modified metabolites and metabolic pathways.Therefore,the objective of this study was to explore the impacts of trace levels of antibiotic(carbadox)on host metabolic profiles and colon microbiota of weaned pigs experimentally infected with ETEC F18.Results:The multivariate analysis highlighted a distinct metabolomic profile of serum and colon digesta between trace amounts of antibiotic(TRA;0.5 mg/kg carbadox)and label-recommended dose antibiotic(REC;50 mg/kg carbadox)on d 5 post-inoculation(PI).The relative abundance of metabolomic markers of amino acids,carbohydrates,and purine metabolism were significantly differentiated between the TRA and REC groups(q<0.2).In addition,pigs in REC group had the highest(P<0.05)relative abundance of Lactobacillaceae and tended to have increased(P<0.10)relative abundance of Lachnospiraceae in the colon digesta on d 5 PI.On d 11 PI,pigs in REC had greater(P<0.05)relative abundance of Clostridiaceae compared with other groups,whereas had reduced(P<0.05)relative abundance of Prevotellaceae than pigs in control group.Conclusions:Trace amounts of antibiotic resulted in differential metabolites and metabolic pathways that may be associated with its slow responses against ETEC F18 infection.The altered gut microbiota profiles by labelrecommended dose antibiotic may contribute to the promotion of disease resistance in weaned pigs.