Dynamical patterns of mineral elements during decomposition processes were investigated for seven common canopy species in a subtropical evergreen broad-leaved forest by means of litterbag technique over 2 years. The ...Dynamical patterns of mineral elements during decomposition processes were investigated for seven common canopy species in a subtropical evergreen broad-leaved forest by means of litterbag technique over 2 years. The species studied are representative for the vegetation in the study area and differed significantly in chemical qualities of their litter. No significant relationships were found between decomposition rate (percentage dry mass remaining and decomposition constant k) and initial element cuncentrations.However, there were significant correlations betweeu the percentage of dry mass remaining and the mineral element concentrations in the remaining litter for most cases. The rank of the element mobility in decomposition process was as follows: Na = K 〉 Mg ≥ Ca 〉 N ≥ Mn ≥ Zn ≥ P 〉 Cu 〉〉 Al 〉〉 Fe. Concentrations of K and Na decreased in all species as decomposition proceeded. Calcium and Mg also decreased in concentrntion but with a temporal increase in the initial phase of decomposition, while the concentrations of other elements (Zn, Cu, AL and Fei increased for all species with exception of Mn which revealed a different pattern in different species. In most species, microelements (Cu, Al, and Fe) significantly increased in absolute amounts at the end of the litterbag incubation, which could be ascribed to a lange extent to the mechanism of abiotic fixation to humic substances rather than biological immobilization.展开更多
Aims Plant diversity has been linked to both increasing and decreasing levels of arthropod herbivore damage in different plant communities.So far,these links have mainly been studied in grasslands or in artificial tre...Aims Plant diversity has been linked to both increasing and decreasing levels of arthropod herbivore damage in different plant communities.So far,these links have mainly been studied in grasslands or in artificial tree plantations with low species richness.Furthermore,most studies provide results from newly established experimental plant communities where trophic links are not fully established or from stands of tree saplings that have not yet developed a canopy.Here,we test how tree diversity in a species-rich subtropical forest in China with fully developed tree canopy affects levels of herbivore damage caused by different arthropod feeding guilds.Methods We established 27 plots of 30×30 m area.The plots were selected randomly but with the constraint that they had to span a large range of tree diversity as required for comparative studies in contrast to sample surveys.We recorded herbivore damage caused by arthropod feeding guilds(leaf chewers,leaf skeletonizers and sap feeders)on canopy leaves of all major tree species.Important Findings Levels of herbivore damage increased with tree species richness and tree phylogenetic diversity.These effects were most pronounced for damage caused by leaf chewers.Although the two diversity measures were highly correlated,we additionally found a significant interaction between them,whereby species richness increased herbivory mostly at low levels of phylogenetic diversity.Tree species with the lowest proportion of canopy leaf biomass in a plot tended to suffer the highest levels of herbivore damage,which is in contrast to expectations based on the resource concentration hypothesis.Our results are in agreement with expectations of the dietary mixing hypothesis where generalist herbivores with a broad spectrum of food plants benefit from increased resource diversity in tree species-rich forest patches.展开更多
Undulations in weather patterns have caused climate shifts of increased frequency and duration around the world. The need for additional research and model data on this pressing problem has resulted in a plethora of r...Undulations in weather patterns have caused climate shifts of increased frequency and duration around the world. The need for additional research and model data on this pressing problem has resulted in a plethora of research groups examining a particular tree species or biome for negative effects of climate change. This review aims to (1) collect and merge recent research data on regeneration within old- and new-growth forests, (2) highlight and expand upon selected topics for additional discussion, and (3) report how shade tolerance, drought toler- ance, and inherent plasticity affect tree growth and development. Al- though shade and drought tolerance have been well studied by a number of research groups, this review reveals that in-depth analysis of a single or a few species in a given area will not generate the data required to implement a successful regeneration plan. Studies using historical accounts of previous species composition, information regarding site sea- sonality, species competition, and individual responses to drought and shade are needed to (1) develop best management plans and (2) ensure future modeling experiments are focused on a greater variety of species using more innovative methods to evaluate climate change effects.展开更多
文摘Dynamical patterns of mineral elements during decomposition processes were investigated for seven common canopy species in a subtropical evergreen broad-leaved forest by means of litterbag technique over 2 years. The species studied are representative for the vegetation in the study area and differed significantly in chemical qualities of their litter. No significant relationships were found between decomposition rate (percentage dry mass remaining and decomposition constant k) and initial element cuncentrations.However, there were significant correlations betweeu the percentage of dry mass remaining and the mineral element concentrations in the remaining litter for most cases. The rank of the element mobility in decomposition process was as follows: Na = K 〉 Mg ≥ Ca 〉 N ≥ Mn ≥ Zn ≥ P 〉 Cu 〉〉 Al 〉〉 Fe. Concentrations of K and Na decreased in all species as decomposition proceeded. Calcium and Mg also decreased in concentrntion but with a temporal increase in the initial phase of decomposition, while the concentrations of other elements (Zn, Cu, AL and Fei increased for all species with exception of Mn which revealed a different pattern in different species. In most species, microelements (Cu, Al, and Fe) significantly increased in absolute amounts at the end of the litterbag incubation, which could be ascribed to a lange extent to the mechanism of abiotic fixation to humic substances rather than biological immobilization.
基金the European project BACCARA funded by the European Commission’s Seventh Framework Program(FP7/2007-2013 under Grant Agreement No.226299)for financial supportthe administration of the Gutianshan National Nature Reserve and to the members of the BEF-China consortium for logistic and intellectual support+1 种基金the National Science Foundation of China(NSFC 30710103907 and 30930005)the German Research Foundation(DFG FOR 891)that granted and permitted the establishment of the experiment.
文摘Aims Plant diversity has been linked to both increasing and decreasing levels of arthropod herbivore damage in different plant communities.So far,these links have mainly been studied in grasslands or in artificial tree plantations with low species richness.Furthermore,most studies provide results from newly established experimental plant communities where trophic links are not fully established or from stands of tree saplings that have not yet developed a canopy.Here,we test how tree diversity in a species-rich subtropical forest in China with fully developed tree canopy affects levels of herbivore damage caused by different arthropod feeding guilds.Methods We established 27 plots of 30×30 m area.The plots were selected randomly but with the constraint that they had to span a large range of tree diversity as required for comparative studies in contrast to sample surveys.We recorded herbivore damage caused by arthropod feeding guilds(leaf chewers,leaf skeletonizers and sap feeders)on canopy leaves of all major tree species.Important Findings Levels of herbivore damage increased with tree species richness and tree phylogenetic diversity.These effects were most pronounced for damage caused by leaf chewers.Although the two diversity measures were highly correlated,we additionally found a significant interaction between them,whereby species richness increased herbivory mostly at low levels of phylogenetic diversity.Tree species with the lowest proportion of canopy leaf biomass in a plot tended to suffer the highest levels of herbivore damage,which is in contrast to expectations based on the resource concentration hypothesis.Our results are in agreement with expectations of the dietary mixing hypothesis where generalist herbivores with a broad spectrum of food plants benefit from increased resource diversity in tree species-rich forest patches.
文摘Undulations in weather patterns have caused climate shifts of increased frequency and duration around the world. The need for additional research and model data on this pressing problem has resulted in a plethora of research groups examining a particular tree species or biome for negative effects of climate change. This review aims to (1) collect and merge recent research data on regeneration within old- and new-growth forests, (2) highlight and expand upon selected topics for additional discussion, and (3) report how shade tolerance, drought toler- ance, and inherent plasticity affect tree growth and development. Al- though shade and drought tolerance have been well studied by a number of research groups, this review reveals that in-depth analysis of a single or a few species in a given area will not generate the data required to implement a successful regeneration plan. Studies using historical accounts of previous species composition, information regarding site sea- sonality, species competition, and individual responses to drought and shade are needed to (1) develop best management plans and (2) ensure future modeling experiments are focused on a greater variety of species using more innovative methods to evaluate climate change effects.