This paper is concerned with a class of uncertain backward stochastic differential equations (UBSDEs) driven by both an m-dimensional Brownian motion and a d-dimensional canonical process with uniform Lipschitzian c...This paper is concerned with a class of uncertain backward stochastic differential equations (UBSDEs) driven by both an m-dimensional Brownian motion and a d-dimensional canonical process with uniform Lipschitzian coefficients. Such equations can be useful in mod- elling hybrid systems, where the phenomena are simultaneously subjected to two kinds of un- certainties: randomness and uncertainty. The solutions of UBSDEs are the uncertain stochastic processes. Thus, the existence and uniqueness of solutions to UBSDEs with Lipschitzian coeffi- cients are proved.展开更多
In this paper, we present a new method for solving a class of high-order quasi exactly solvable ordinary differential equations. With this method, the computed solution is expressed as a linear combination of the cano...In this paper, we present a new method for solving a class of high-order quasi exactly solvable ordinary differential equations. With this method, the computed solution is expressed as a linear combination of the canonical polynomials associated with the given differential operator. An iterative algorithm summarizing the procedure is presented and its efficiency is demonstrated through considering two applied problems.展开更多
基金Supported by National Natural Science Foundation of China(71171003,71210107026)Anhui Natural Science Foundation(10040606003)Anhui Natural Science Foundation of Universities(KJ2012B019,KJ2013B023)
文摘This paper is concerned with a class of uncertain backward stochastic differential equations (UBSDEs) driven by both an m-dimensional Brownian motion and a d-dimensional canonical process with uniform Lipschitzian coefficients. Such equations can be useful in mod- elling hybrid systems, where the phenomena are simultaneously subjected to two kinds of un- certainties: randomness and uncertainty. The solutions of UBSDEs are the uncertain stochastic processes. Thus, the existence and uniqueness of solutions to UBSDEs with Lipschitzian coeffi- cients are proved.
文摘In this paper, we present a new method for solving a class of high-order quasi exactly solvable ordinary differential equations. With this method, the computed solution is expressed as a linear combination of the canonical polynomials associated with the given differential operator. An iterative algorithm summarizing the procedure is presented and its efficiency is demonstrated through considering two applied problems.